Physics, asked by SurendraSidana, 3 months ago

A car starts from rest at velocity 10m/s in 40secs. The driver applies a breakand slows down to 5m/s in 10secs. Find the acceleration in both the cases.​

Answers

Answered by Yuseong
3

Answer:

Acceleration in first case = 0.25 m/s²

Acceleration in second case = -0.5 m/s²

Explanation:

As per the provided information in the given question, we have :

In first case :

  • Initial velocity (u) = 0 m/s

[ Whenever the body starts from rest its initial velocity is taken as 0.]

  • Final velocity (v) = 10 m/s
  • Time (t) = 40 s

In second case :

  • Initial velocity (u) = 10 m/s
  • Final velocity (v) = 5 m/s
  • Time (t) = 10 s

  \underline{ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \qquad\: \qquad \:\qquad \qquad \:\qquad\qquad  \qquad \qquad\qquad} \\

Calculating acceleration in first case :

By using the first equation of motion,

 \\ \longrightarrow \quad \pmb{\boxed{\sf {v = u + at}} }\\

  • v denotes final velocity
  • u denotes initial velocity
  • a denotes acceleration
  • t denotes time

Substituting values,

 \\ \longrightarrow \sf{\quad {10 = 0 + 40a }} \\

 \\ \longrightarrow \sf{\quad {10 = 40a }} \\

 \\ \longrightarrow \sf{\quad {\dfrac{10}{40} = a }} \\

 \\ \longrightarrow \sf{\quad {0.25 = a }} \\

 \\ \longrightarrow \bf{\quad \underline{ 0.25 \; m/s^2 = Acceleration_{(First \; case)} }} \\

Therefore, acceleration in first case is 0.25 m/s².

  \underline{ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \qquad\: \qquad \:\qquad \qquad \:\qquad\qquad  \qquad \qquad\qquad} \\

★ Calculating acceleration in second case :

By using the first equation of motion,

 \\ \longrightarrow \quad \pmb{\boxed{\sf {v = u + at}} }\\

  • v denotes final velocity
  • u denotes initial velocity
  • a denotes acceleration
  • t denotes time

Substituting values,

 \\ \longrightarrow \sf{\quad {5 = 10+ 10a }} \\

 \\ \longrightarrow \sf{\quad {-5 = 10a }} \\

 \\ \longrightarrow \sf{\quad {\dfrac{-5}{10} = a }} \\

 \\ \longrightarrow \sf{\quad {-0.5 = a }} \\

 \\ \longrightarrow \bf{\quad \underline{ -0.5 \; m/s^2 = Acceleration_{(Second \; case)} }} \\

Therefore, acceleration in second case is -0.5 m/s².

More Information :

Equations of motion :

 \boxed{ \begin{array}{cc}    \pmb{\sf{ \quad \: v = u + at \quad}}  \\  \\  \pmb{\sf{ \quad \:  s= ut +  \cfrac{1}{2}a{t}^{2}  \quad \: } } \\ \\  \pmb{\sf{ \quad \:  {v}^{2} -  {u}^{2}  = 2as \quad \:}}\end{array}}

  • v denotes final velocity
  • u denotes initial velocity
  • a denotes acceleration
  • t denotes time
  • s denotes distance
Answered by mehakShrgll
2

Answer:-

Firstly we calculate the acceleration in 1st case .

Initial velocity ,u = 0m/s

Final velocity ,v = 10m/s

Time taken ,t = 40 s

As we know that acceleration is defined as the rate of change in velocity .

a = v-u/t

Where,

a denote acceleration

v denote final velocity

u denote initial velocity

t denote time taken

Substitute the value we get

:\implies:⟹ a₁ = 10-0/40

:\implies:⟹ a₁ = 10/40

:\implies:⟹ a₁ = 1/4

:\implies:⟹ a₁ = 0.25 m/s²

Hence, the acceleration of the car is 0.25m/s²

_____________________________

Initial velocity ,u = 10m/s

Final velocity ,v = 5m/s

Time taken ,t = 10s

Now, calculating the acceleration in 2nd case .

• a₂ = v-u/t

Substitute the value we get

:\implies:⟹ a₂ = 5-10/10

:\implies:⟹ a₂ = -5/10

:\implies:⟹ a₂ = -0.5 m/s²

Here, negative sign show retardation

Hence, the acceleration in 2nd case is 0.5m/s².

Similar questions