Physics, asked by arora2635rushil, 10 months ago

A car starts from the rest and accelerates at the rate of 5m/s2. It continue
accelerating for 10 s and then move at constant velocity for next 10 s. Calculate
the total distance traveled by the car in 20s.

Answers

Answered by BrainlyConqueror0901
25

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{Total\:Distance=750\:m}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline \bold{Given :}} \\  \tt:  \implies Acceleration(a) = 5 { \: ms}^{2}  \\  \\  \tt:  \implies Time(t_{1}) = 10 \: sec \\  \\ \tt:  \implies Time(t_{2}) = 10 \: sec \\  \\ \red{\underline \bold{To \: Find :}} \\  \tt:  \implies Distance \: travelled(s) = ?

• According to given question :

 \tt \circ \: Initial \: velocity = 0 \: m/s \\  \\  \bold{As \: we \: know \: that} \\  \tt:  \implies s = ut  +  \frac{1}{2}  {at}^{2}  \\  \\ \tt:  \implies s_{1}= 0 \times 10 +  \frac{1}{2}  \times 5 \times  {10}^{2}  \\  \\  \green{\tt:  \implies s_{1} = 250 \: m} \\  \\  \bold{Velocity \: after \: 10 \: sec} \\  \tt:  \implies  {v}^{2}  =  {u}^{2}  + 2as \\  \\ \tt:  \implies  {v}^{2}  = {0}^{2}  + 2 \times 5 \times 250 \\  \\ \tt:  \implies  {v}^{2}  =2500 \\  \\ \tt:  \implies v = \sqrt{2500}  \\  \\  \green{\tt:  \implies v =50 \: m/s} \\  \\  \tt \circ \: Initial \: velocity \: after \: 10 \: sec = 50 \: m/s \\  \\  \bold{As \: we \: know \: that} \\  \tt:  \implies s =ut +  \frac{1}{2}  {at}^{2}  \\  \\ \tt:  \implies  s_{2}  =50 \times 10 +  \frac{1}{2}  \times 0 \times  {10}^{2}  \\  \\  \green{\tt:  \implies  s_{2} =500 \: m} \\  \\  \bold{For \: Total \: Distance : } \\ \tt:  \implies s = s_{1} +  s_{2} \\  \\ \tt:  \implies s =250 + 500 \\  \\  \green{\tt:  \implies s =750 \: m}

Answered by ғɪɴɴвαłσℜ
28

Aɴꜱᴡᴇʀ

\rm{\orange{S = 750 \:m}}

_________________

Gɪᴠᴇɴ

 \sf \bigstar{} \:  \: initial \: velocity = 0m/s \\  \\  \sf \bigstar \:  \: {}acceleration  = 5m / {s}^{2}  \\  \\  \sf \bigstar{} \:  \: t_1 =10 \: seconds  \\  \\  \sf \bigstar{} \:  \:  t_2 = seconds

_________________

ᴛᴏ ꜰɪɴᴅ

We have to find the distance travelled by the body

_________________

Sᴛᴇᴘꜱ

As it has been give on that u = 0 we can first use the formula \tt{s = ut+\frac{1}{2} a{t}^{2}}

 \tt \leadsto{}s_1 =0 \times 10 +  \frac{1}{2}  \times 5 \times  {(10)}^{2}  \\  \\  \tt \leadsto{}s_1 =  \frac{1}{ \cancel2}  \times 5 \times  \cancel{100} \\  \\  \tt \leadsto{ \red{s_1 =250  \: \sf{}m }}

Now lets find the velocity of the body after 10 seconds

So now let's use the formula \sf{v}^{2}-{u}^{2}=2as

 \tt{}it \: can \: also \: be \: written \: as \:  \bf {v}^{2}  =  {u}^{2}  + 2as \\  \\  \tt{} \hookrightarrow{} {v}^{2}  = {0}^{2}   + 2(10)(250) \\  \\  \tt \hookrightarrow{} {v}^{2}  = 2500 \\  \\  \tt{} \hookrightarrow{}v =  \sqrt{2500}  \\  \\  \tt{} \hookrightarrow{ \blue{v = 50}}

Actually the value that we found now is the initial velocity after 10 seconds

So now lets find the 2nd distance

  \tt{}lets \: use \: the \: formula \:  \sf{}s = ut +  \frac{1}{2} a {t}^{2}  \\  \\  \tt{} \implies{}s_2 = 50 \times 10 +  \frac{1}{2} (0)(10 {)}^{2}  \\  \\  \tt{} \implies{} \green{s_2 = 500 \sf{} \: m}

So now the total distance covered is equal to,

 \tt{}s_1 + s_2 = s \\  \\  \tt \dashrightarrow{}250 + 500 \\  \\  \tt{}  \purple{ \dashrightarrow{}750 \:  \sf{}m}

_____________________________________

Similar questions