Physics, asked by anitadangi104, 11 months ago

A car travelling at a uniform speed of 20 m/s approaches a signal. The driver applies the

brake and the car retards uniformly at the rate of 2 m/s2. How much time will be taken

by the car to come to rest?​

Answers

Answered by BrainlyConqueror0901
55

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{Time\:taken=10\:sec}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline \bold{Given :}} \\  \tt: \implies Initial \: speed(u) = 20 \: m/s \\  \\ \tt: \implies Acceleration(a) =  - 2 \:  {m/s}^{2}  \\  \\ \red{\underline \bold{To \: Find :}} \\  \tt:  \implies Time \: taken(t) =?

• According to given question :

 \tt \circ \: Final \: velocity = 0 \: m/s \\  \\  \bold{As \: we \: know \: that} \\  \tt:  \implies v = u + at \\  \\  \tt:  \implies 0 = 20 + ( - 2) \times t \\  \\  \tt:  \implies  - 20 =  - 2 \times t \\  \\  \tt:  \implies t =  \frac{ - 20}{ - 2}  \\  \\   \green{\tt:  \implies t =  10 \: sec} \\  \\  \green{\tt \therefore Time \: taken \: to \: stop \: car \: is \: 10 \: sec}\\\\  \blue {\bold{Some \: related \: formula }} \\   \orange{\tt \circ \:  s = ut +  \frac{1}{2} {at}^{2}}   \\ \\  \orange{\tt \circ \:  {v}^{2}  =  {u}^{2}  + 2as}


Brâiñlynêha: Nice (•ө•)♡
BrainlyConqueror0901: Thnx : )
Answered by Brâiñlynêha
32

Given :-

Initial speed of a car (u) = 20m/s

Final velocity (v)=0 [ car come in rest ]

Acceleration (Retardation ) = -2m/s^2

To find

Time taken to stop the car !

\dag{\underline{\sf {By \ first \ equation \ of \ motion}}}

\bigstar{\boxed{\textsf{\textbf{v=u+at}}}}

where !

v= Final velocity

u= initial velocity

t= Time taken

a = Acceleration

  • Now find the time required to come car in rest

\longmapsto\sf v=u+at\\ \\ \longmapsto\sf  0=20 + (-2)\times t\\ \\ \longmapsto\sf -20= -2\times t\\ \\ \longmapsto\sf \cancel{\dfrac{-20}{-2}}=t\\ \\ \longmapsto\sf t= 10 sec

\bigstar{\underline{\textsf{\textbf{Time \ taken \ to \ stop \ the \ car = 10 \ seconds }}}}


BrainlyConqueror0901: well done : )
Brâiñlynêha: Thanka :D
Similar questions
Math, 11 months ago