Physics, asked by tanishagupta122004, 4 months ago

A car travels for 4 hrs.Fir first 3 hours its goes away from the city A to city B its velocity is v1 and v2 for equal interval of time .In last 1 hr.it returns back with with velocity v3 and stops at some place between city A and city B . Find the ratio of Magnitude of average velocity and Average speed?​

Answers

Answered by Anonymous
3

\mathfrak{\underline{\underline{\red{Question: }}}}

A car travels for 4 hrs.Fir first 3 hours its goes away from the city A to city B its velocity is v1 and v2 for equal interval of time .In last 1 hr.it returns back with with velocity v3 and stops at some place between city A and city B . Find the ratio of Magnitude of average velocity and Average speed?

\mathfrak{\underline{\underline{\red{Solution.•♫•♬•}}}}

\sf\pink{Let ~the ~total ~distance~ travelled ~be ~'x'.}

\sf\pink{Let ~the ~total ~time ~taken ~be~ T.}

\sf\pink{Average~ speed =\frac{ Total ~distance}{Total ~time} =\frac{ x}{T}}

\mathfrak{\underline{\underline{\red{First~half: }}}}

{:⇒}\tt\purple{v = 10 km/h}

{:⇒}\tt\purple{s = \frac{1}{3} x}

{:⇒}\tt\purple{t= \frac{x}{\cancel{ \frac{3}{10}}}= \frac{x}{30}}

\mathfrak{\underline{\underline{\red{Second~half: }}}}

{:⇒}\tt\green{v = 20 km/h}

{:⇒}\tt\green{s =\frac{1 }{3} x}

{:⇒}\tt\green{t= \frac{x}{\cancel{\frac{3}{20}}} = \frac{x}{60}}

\mathfrak{\underline{\underline{\red{Third~half: }}}}

{:⇒}\tt\orange{v = 60 km/h}

{:⇒}\tt\orange{s = \frac{1}{3}x}

{:⇒}\tt\orange{t =\frac{ x}{\cancel{\frac{3}{60}}}=\frac{ x}{180}}

\mathfrak{\underline{\underline{\red{Now: }}}},

\tt\pink{:⇒Time~ for~ entire ~journey, T~ =\frac{ x}{30 }+\frac{ x}{60 }+\frac{ x}{180}}

\mathfrak{\underline{\underline{\red{Now: }}}},

\sf\purple{Average ~speed ~of~ the~ entire ~journey,~ Vav = \frac{Total~ distance}{Total time}}

\tt\purple{=\frac{ x}{\frac{x}{18}}}

\tt\purple{= 18 km/h}

\longrightarrowThe ratio of Magnitude of average velocity and Average speed is 18kmph.

Answered by Anonymous
6

\huge\tt\colorbox{pink}{Answer}

Let the total distance travelled be x

\sf\pink{Let ~the ~total ~time ~taken ~be~ T.}

\sf\pink{Average~ speed =\frac{ Total ~distance}{Total ~time} =\frac{ x}{T}}

\mathfrak{\underline{\underline{\red{First~half: }}}}

{:⇒}\tt\purple{v = 10 km/h}

{:⇒} \tt\purple{s = \frac{1}{3} x}

{:⇒} \tt\purple{t= \frac{x}{\cancel{ \frac{3}{10}}}= \frac{x}{30}}

\mathfrak{\underline{\underline{\red{Second~half: }}}}

{:⇒} \tt\green{v = 20 km/h}

{:⇒} \tt\green{s =\frac{1 }{3} x}

{:⇒} \tt\green{t= \frac{x}{\cancel{\frac{3}{20}}} = \frac{x}{60}}

\mathfrak{\underline{\underline{\red{Third~half: }}}}

{:⇒} \tt\orange{v = 60 km/h}

{:⇒}\tt\orange{s = \frac{1}{3}x}

{:⇒} \tt\orange{t =\frac{ x}{\cancel{\frac{3}{60}}}=\frac{ x}{180}}

\mathfrak{\underline{\underline{\red{Now: }}}}

\tt\pink{:⇒Time~ for~ entire ~journey, T~ =\frac{ x}{30 }+\frac{ x}{60 }+\frac{ x}{180}}

\sf\purple{Average ~speed ~of~ the~ entire ~journey,~ Vav = \frac{Total~ distance}{Total time}}

\tt\purple{=\frac{ x}{\frac{x}{18}}}

\tt\purple{= 18 km/h}

Similar questions