Physics, asked by saleemarcr, 1 month ago

A car travels with a constant velocity of 15m/s for 4 seconds and then decelerates to come to
halt in 4 seconds. Find the total displacement undergone by the car. Draw the v-t graph for the motion of this body.

Answers

Answered by ItzBrainlyLords
3

Solving

 \bull \:  \large  \sf \red{given : } \\  \\  \large \mapsto \rm \: velocity = 15m {s}^{ - 1}  \\  \\  \large \rm \mapsto \: time = 4 \: seconds

time of decelerate = 4 seconds

 \large \purple{ \sf \: formula :  } \\

Decelerate =

 \large \sf \leadsto \:  \dfrac{initial \:  \: velocity  - final \: \: velocity}{time \:  \: taken}  \\  \\

Initial Velocity = u

Final Velocity = v

Time = t

Since,

 \large  \looparrowright\rm \blue{velocity \:  \: is \:  \: constant \: ..} \\

Suppose , car started from rest

 \large  \rm\implies \: initial \:  \: velocity = 0m {s}^{ - 1}  \\

★ Final Velocity = 15m/s

★ Time taken = 4 seconds

 \:

 \large \sf \green{ \rightarrow \: finding \:  \: decelerate : } \\

 \large \tt  : \implies \:  \dfrac{0 - 15}{4} \\   \\ \\  \large \tt  : \implies \:  \dfrac{ - 15}{4}  =  - 3.75\\  \\

 \large \rm \orange{finding \:  \: distance : } \\

 \large  \mapsto \sf \: s = ut +  \dfrac{1}{2} a {t}^{2}  \\  \\  \\  \large \implies \sf \: s = 0(4) +  \frac{ - 3.75}{2} \times  {4}^{2}  \\  \\   \\  \large \implies \sf \: s =  \frac{ - 375}{ 100 \times  2} \times  {4} \times 4  \\  \\   \\  \large \implies \sf \: s =  \frac{ - 375}{ 100 \times   \cancel2} \times   \cancel{4} \:  \: 2 \times 4  \\  \\

 \large \rm \therefore \:  \red{distance =  - 30m {s}^{ - 1} } \\  \\

Displacement = - 30m/s

Similar questions