CBSE BOARD X, asked by nikhilscigeek2005, 11 months ago

A carpenter cuts a wooden cone into three parts A, B and C by
base as shown in the diagram. The heights of the three parts are equal
planes
Find the ratio of the volumes of parts A, B and C
(I) Find the ratio of the base areas of parts A, B and C
(2) If the volume of the original cone is 540 cu em,
find the volume of part B

if you can solve this then you can solve any question in class X board exams (pisa problems)

Attachments:

Answers

Answered by gautamrajgs
6

Answer:use similar triangle , as the three parts have same height then take the radius of the three parts as R,2R,3R

Explanation:

Attachments:
Answered by TooFree
10

Recall the following formulae:

\text {Volume of a cone } = \dfrac{1}{3} \pi r^2h

\text {Volume of a frustum } = \dfrac{1}{3} \pi h (R_2^2 + R_1^2 +R_1R_2)

-----------------------------------------------------------------------------------------------

Show the relationships among the 3 radii:

*See attached for a cross section of the cone.

△ABG is similar to △ACF

\dfrac{R_{1} }{R_{2}} = \dfrac{h}{2h}

\dfrac{R_{1} }{R_{2}} = \dfrac{1}{2}

R_2 = 2R_1

△ABG is similar to △ADE

\dfrac{R_{1} }{R_{3}} = \dfrac{h}{3h}

\dfrac{R_{1} }{R_{3}} = \dfrac{1}{3}

R_3 = 3R_1

Define r:

\text{Let }R_1 = r

\text{Then }R_2 = 2r

\text{And }R_3 = 3r

-----------------------------------------------------------------------------------------------

Find the volume of Part A:

\text {Volume of a cone } = \dfrac{1}{3} \pi r^2h

\text {Volume of A } = \dfrac{1}{3} \pi r^2h

Find the volume of Part B:

\text {Volume of a frustum } = \dfrac{1}{3} \pi h (R_2^2 + R_1^2 +R_1R_2)

\text {Volume of a frustum } = \dfrac{1}{3} \pi h ((2r)^2 + r^2 +(2r)(r))

\text {Volume of a frustum } = \dfrac{1}{3} \pi h (4r^2 + r^2 +2r^2)

\text {Volume of a frustum } = \dfrac{1}{3} \pi h (7r^2)

\text {Volume of a frustum } = \dfrac{7}{3} \pi hr^2

Find the volume of Part C:

\text {Volume of a frustum } = \dfrac{1}{3} \pi h (R_3^2 + R_2^2 +R_3R_2)

\text {Volume of a frustum } = \dfrac{1}{3} \pi h ((3r)^2 + (2r)^2 +(3r)(2r))

\text {Volume of a frustum } = \dfrac{1}{3} \pi h (9r^2 + 4r^2 +6r^2)

\text {Volume of a frustum } = \dfrac{1}{3} \pi h (19r^2)

\text {Volume of a frustum } = \dfrac{19}{3} \pi h r^2

Find the ratio of the volumes:

A : B : C = \dfrac{1}{3} \pi hr^2 : \dfrac{7}{3} \pi hr^2 : \dfrac{19}{3} \pi hr^2

A : B : C = \dfrac{1}{3} : \dfrac{7}{3}  : \dfrac{19}{3}

A : B : C = 1 : 7 : 19

Answer: The ratio of the volumes of A : B : C is 1 : 7 : 9

-----------------------------------------------------------------------------------------------

Find the base area of A:

\text{area } = \pi r^2

Find the base area of B:

\text{area } = \pi (2r)^2

\text{area } = 4 \pi r^2

Find the base area of C:

\text{area } = \pi (3r)^2

\text{area } =9 \pi r^2

Find the ratio of A : B :C:

A : B : C = \pi r^2 : 4 \pi r^2  : 9\pi r^2

A : B : C = 1 : 4 : 9

Answer: The ratio of the base area of A : B : C is 1 : 4 : 9

-----------------------------------------------------------------------------------------------

Find the volume of B:

\text{Volume of the cone} = \dfrac{1}{3} \pi  (3r)^2(3h)

\text{Volume of the cone} = 9\pi r^2h

9\pi r^2h = 540

\pi r^2h = 60

\text{Volume of B} = \dfrac{7}{3} \pi  r^2h

\text{Volume of B} = \dfrac{7}{3} \bigg(\pi  r^2h\bigg)

\text{Volume of B} = \dfrac{7}{3} \bigg(60\bigg)

\text{Volume of B} = 140 \text { cm}^3

Answer: The volume of B is 140 cm³.

Attachments:
Similar questions