Science, asked by paolatabora534, 6 months ago

A cart rolling down an incline for 5.0 seconds has an acceleration of 4.0 m/s/s. If the cart has a beginning speed of 2.0 m/s, what is its final speed (in m/s)?

Answers

Answered by SarcasticL0ve
5

\sf Given \begin{cases} & \sf{Initial\;speed,\;u = 2.0\;m/s }  \\ & \sf{Acceleration,\;a =  4.0\;m/s^2}  \\ & \sf{Time,\;t = 5.0\;s} \end{cases}

We have to find final Velocity, v?

━━━━━━━━━━━━━━━━━━━━━━━━━

Using First equation of motion,

\star\;{\boxed{\sf{\purple{v = u + at}}}}\\ \\

:\implies\sf v = 2.0 + 4.0 \times 5\\ \\

:\implies\sf v = 2.0 + 20.0\\ \\

:\implies{\boxed{\frak{\pink{v = 22.0\;m/s}}}}\;\bigstar\\ \\

\therefore\;{\underline{\sf{Hence,\; Final\; velocity\;of\;cart\;is\;\bf{22.0\;m/s.}}}}

⠀⠀━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

\qquad\qquad\boxed{\underline{\underline{\bigstar \: \bf\:More\:to\:know\:\bigstar}}} \\  \\

★ There are three equations of motion:- \\ \\

⠀⠀⠀✩ \sf v = u + at

⠀⠀⠀✩ \sf s = ut + \dfrac{1}{2} at^2

⠀⠀⠀✩ \sf v^2 - u^2 = 2as

⠀⠀ ━━━━━━━━━━━━━━━━━━━━━

\;\;\star\;\sf Acceleration (a) = \dfrac{Final\; velocity (v) - Initial\; velocity (u)}{Time (t)}

Answered by Anonymous
0

Explanation:

Initialspeed,u=2.0m/s

Acceleration,a=4.0m/s

2

Time,t=5.0s

We have to find final Velocity, v?

━━━━━━━━━━━━━━━━━━━━━━━━━

Using First equation of motion,

\begin{gathered}\star\;{\boxed{\sf{\purple{v = u + at}}}}\\ \\\end{gathered}

v=u+at

\begin{gathered}:\implies\sf v = 2.0 + 4.0 \times 5\\ \\\end{gathered}

:⟹v=2.0+4.0×5

\begin{gathered}:\implies\sf v = 2.0 + 20.0\\ \\\end{gathered}

:⟹v=2.0+20.0

\begin{gathered}:\implies{\boxed{\frak{\pink{v = 22.0\;m/s}}}}\;\bigstar\\ \\\end{gathered}

:⟹

v=22.0m/s

\therefore\;{\underline{\sf{Hence,\; Final\; velocity\;of\;cart\;is\;\bf{22.0\;m/s.}}}}∴

Hence,Finalvelocityofcartis22.0m/s.

⠀⠀━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

\begin{gathered}\qquad\qquad\boxed{\underline{\underline{\bigstar \: \bf\:More\:to\:know\:\bigstar}}} \\ \\\end{gathered}

★Moretoknow★

★ There are three equations of motion:- \begin{gathered}\\ \\\end{gathered}

⠀⠀⠀✩ \sf v = u + atv=u+at

⠀⠀⠀✩ \sf s = ut + \dfrac{1}{2} at^2s=ut+

2

1

at

2

⠀⠀⠀✩ \sf v^2 - u^2 = 2asv

2

−u

2

=2as

⠀⠀ ━━━━━━━━━━━━━━━━━━━━━

\;\;\star\;\sf Acceleration (a) = \dfrac{Final\; velocity (v) - Initial\; velocity (u)}{Time (t)}⋆Acceleration(a)=

Time(t)

Finalvelocity(v)−Initialvelocity(u)

Similar questions