A cart rolling down an incline for 5.0 seconds has an acceleration of 4.0 m/s/s. If the cart has a beginning speed of 2.0 m/s, what is its final speed (in m/s)?
Answers
We have to find final Velocity, v?
━━━━━━━━━━━━━━━━━━━━━━━━━
Using First equation of motion,
⠀⠀━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
★ There are three equations of motion:-
⠀⠀⠀✩
⠀⠀⠀✩
⠀⠀⠀✩
⠀⠀ ━━━━━━━━━━━━━━━━━━━━━
Explanation:
Initialspeed,u=2.0m/s
Acceleration,a=4.0m/s
2
Time,t=5.0s
We have to find final Velocity, v?
━━━━━━━━━━━━━━━━━━━━━━━━━
Using First equation of motion,
\begin{gathered}\star\;{\boxed{\sf{\purple{v = u + at}}}}\\ \\\end{gathered}
⋆
v=u+at
\begin{gathered}:\implies\sf v = 2.0 + 4.0 \times 5\\ \\\end{gathered}
:⟹v=2.0+4.0×5
\begin{gathered}:\implies\sf v = 2.0 + 20.0\\ \\\end{gathered}
:⟹v=2.0+20.0
\begin{gathered}:\implies{\boxed{\frak{\pink{v = 22.0\;m/s}}}}\;\bigstar\\ \\\end{gathered}
:⟹
v=22.0m/s
★
\therefore\;{\underline{\sf{Hence,\; Final\; velocity\;of\;cart\;is\;\bf{22.0\;m/s.}}}}∴
Hence,Finalvelocityofcartis22.0m/s.
⠀⠀━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
\begin{gathered}\qquad\qquad\boxed{\underline{\underline{\bigstar \: \bf\:More\:to\:know\:\bigstar}}} \\ \\\end{gathered}
★Moretoknow★
★ There are three equations of motion:- \begin{gathered}\\ \\\end{gathered}
⠀⠀⠀✩ \sf v = u + atv=u+at
⠀⠀⠀✩ \sf s = ut + \dfrac{1}{2} at^2s=ut+
2
1
at
2
⠀⠀⠀✩ \sf v^2 - u^2 = 2asv
2
−u
2
=2as
⠀⠀ ━━━━━━━━━━━━━━━━━━━━━
\;\;\star\;\sf Acceleration (a) = \dfrac{Final\; velocity (v) - Initial\; velocity (u)}{Time (t)}⋆Acceleration(a)=
Time(t)
Finalvelocity(v)−Initialvelocity(u)