Math, asked by ExExEx, 1 year ago

A castle has a pillar, which is a cylinder in shape with a cone of same base radius surmounted on it. The total height of the pillar is 60 metres and radius of the pillar is 5 m. Find the height of the conical part, if the volume of the material used in making of pillar is 4400 m³.

Answers

Answered by Anonymous
284

 \large  \underline{  \purple{\underline{ \sf Solution.}}}

 \sf Let  \: the \: height \: of \: the \: conical \: part \: of \: \\  \sf pillar \: be \: h \: m.

 \sf Then, \: height \: of \: the \: cylindrical \: part

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf = (60 - h) \: m

 \sf Clearly \: radius \: of \: cylinder

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf =  \: Radius \: of \: cone

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf = 5 \: m

 \sf Volume \: of \: the \: pillar = 4400 \: m {}^{3}

 \sf Volume \: of \: cylinder

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf = \pi \ r {}^{2} h

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf = \pi(5) {}^{2} (60 - h) \: m {}^{3} \:  \:  ...(1)

 \sf Volume \: of \: cone

 \:   \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf =  \frac{1}{3}\pi \: r {}^{2} h =  \frac{1}{3}(5) {}^{2} h \: m {}^{3}  \:  \: ...(2) \\

 \sf According \: to \: the \: question,

 \sf(1) + (2)

 \:  \:  \sf = \pi(5) {}^{2} (60 - h) +  \frac{1}{3}\pi(5) {}^{2} h = 4400

 \implies  \:  \:  \:  \:  \:  \: \sf\pi25(60 - h) +  \frac{25\pi \: h}{3} = 4400

 \implies \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf \frac{25\pi}{3} [3(60 - h) + h] = 4400 \\

 \implies  \:  \:  \:  \:  \:  \: \sf \frac{25\pi}{3}(180 - 3h + h) = 4400 \\

 \implies \:  \:  \:  \:  \:  \:  \:  \sf \frac{25\pi}{3}(180 - 2h) = 4400 \\

 \implies \:  \:  \:  \:  \:  \sf \frac{25}{3}. \frac{22}{7}(180 - 2h) = 4400 \\

 \implies \:  \:  \:   \sf22 \times 22 \times (180 - 2h)  \\  \sf \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: = 4400  \times 3 \times 7

 \implies \:  \:  \:  \:  \:  \:  \:  \:  \: 180 - 2h =  \frac{4400 \times 3 \times 7}{25 \times 22} \\

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf =  \frac{200 \times 3 \times 7}{25} \\

 \implies \:  \:  \:  \:  \:  \:  \sf 18 - 2 \: h = 8 \times 3 \times 7 = 168 \\

 \implies \:  \:  \:  \: \:  \:  \:  \:   \sf2h = 180 - 168 = 12 \\

 \implies \:  \:  \: \:  \:  \:  \:  \:  \:   \:  \:  \sf \: h =  \frac{12}{2}  = 6 \: m \\  \\

 \sf Hence, \: the \:height \: of \: the \: conical \: part  \\ \sf \:  is \:  \red{6 \: m.}

Similar questions