Math, asked by bologyzoo, 1 month ago

A certain number of two digits is four times the sum of the digits if 8 be added to the number and the digits are reversed the number is.... ​

Answers

Answered by BrainlicaLDoll
8

{\boxed{\underline{\sf Answer \:is \:24}}}

\sf Let\:the\: tens\: digit \:number\: be\: x

\sf Let\: the\: unit \:digit\: number\: be\: y

\sf\bold{\underline{Case\: 1}}

\sf\implies{10x+y=4(x+y)}

\sf\longrightarrow{y=2x------------(i)}

\sf\bold{\underline{Case \:2}}

\sf\implies{10x+y+8=10y+x}

\sf\longrightarrow{ x-y=\frac{-8}{9}------------(ii)}

\sf\underline{Putting\:the\:value\:of\:y\:from\:(i)\:in\:(ii)}

\sf x-2x=\frac{-8}{9}

\sf-x=\frac{-8}{9}

\sf\implies x=\frac{8}{9}

\sf y=2x

\sf y=2\times {\frac{8}{9}}

\sf\implies y=\frac{16}{9}

The digits are in fraction so forming a number using these digits is not possible so your question is wrong. but in case 2 if we add 18 instead of 8 then we can get a genuine answer. So, let's solve it by adding 18 in Case 2.

\sf\bold{\underline{Case \:2}}

\sf\implies{10x+y+18=10y+x}

\sf\longrightarrow{ x-y=-2------------(ii)}

\sf\underline{Putting\:the\:value\:of\:y\:from\:(i)\:in\:(ii)}

\sf x-2x=-2 \\\\ -x=-2\\\\\implies x=2 \\\\y=2x\\\\ y=2\times2\\\\\implies y=4

\sf\bold{\underline{Hence,\:the\:number \:is\:24}}

Similar questions