Math, asked by jyotishjeeya6419, 7 months ago

A certain sum amounts to Rs. 4,000 at the end of 5 years at 12% p.a. interest. Find the sum

Answers

Answered by InfiniteSoul
3

\sf{\bold{\green{\underline{\underline{Given}}}}}

⠀⠀

  • Amount = Rs. 4000
  • Time = 5 years
  • Rate = 12%

______________________

\sf{\bold{\green{\underline{\underline{To\:Find}}}}}

⠀⠀⠀⠀

  • Principle = ??

______________________

\sf{\bold{\green{\underline{\underline{Solution}}}}}

⠀⠀⠀⠀

\sf{\red{\boxed{\bold{Amount = Principle + \dfrac{Principle \times Rate\times Time}{100}}}}}

⠀⠀⠀⠀

  • Let principle be p

⠀⠀⠀⠀

\sf :\implies\: {\bold{4000= p + \dfrac{p\times 12\times 5 }{100} }}

⠀⠀

\sf :\implies\: {\bold{4000= p + \dfrac{p\times 12 }{20} }}

⠀⠀

\sf :\implies\: {\bold{4000= p + \dfrac{p\times 6 }{10} }}

⠀⠀

\sf :\implies\: {\bold{4000= p + \dfrac{6p }{10} }}

⠀⠀

\sf :\implies\: {\bold{4000=  \dfrac{10p + 6p }{10} }}

⠀⠀

\sf :\implies\: {\bold{4000=  \dfrac{16p}{10}}}

⠀⠀

\sf :\implies\: {\bold{ p  =  \dfrac{4000\times 10}{16}}}

⠀⠀

\sf :\implies\: {\bold{ p  =  \dfrac{2000\times 10}{8}}}

⠀⠀

\sf :\implies\: {\bold{ p  =  \dfrac{1000\times 10}{4}}}

⠀⠀

\sf :\implies\: {\bold{ p  =  \dfrac{500\times 10}{2}}}

⠀⠀

\sf :\implies\: {\bold{ p  =  250\times 10}}

⠀⠀⠀⠀

\sf :\implies\: {\bold{ p  =  Rs. 2500}}

⠀⠀

⠀⠀

______________________

\sf{\bold{\green{\underline{\underline{Answer}}}}}

⠀⠀⠀⠀

  • Rs. 2500 will amount to Rs. 4,000 in 5 years at 12% per annum
Answered by Anonymous
8

\huge\bold{\mathbb{QUESTION}}

A certain sum amounts to  Rs.\:4000 at the end of 5 years at 12 \% p.a. interest. Find the sum.

\huge\bold{\mathbb{GIVEN}}

  • Amount = Rs.\:4000

  • Time =5 yrs

  • Rate of interest =12 \%

\huge\bold{\mathbb{TO\:FIND}}

The sum.

\huge\bold{\mathbb{SOLUTION}}

Let the principle be p.

We know that:

\red{\boxed{\Large{a=p+{\frac{p\times r\times t}{100}}}}}

Where,

  • a is the amount.

  • p is the principle.

  • r is the rate.

  • t is the time.

Here,

  • a=4000

  • r=12

  • t=5

Let's find out the principle.

\therefore 4000=p+{\dfrac{p\times 12\times 5}{100}}

\implies 4000=p+{\dfrac{60p}{100}}

\implies 4000={\dfrac{(100p+60p)}{100}}

\implies 4000={\dfrac{160p}{100}}

\implies 4000={\dfrac{16\cancel{0}p}{10\cancel{0}}}

\implies 4000={\dfrac{16p}{10}}

By cross multiplication.

\implies (4000\times 10) = 16p

\implies 40000 = 16p

\implies {\dfrac{40000}{16}} = p

\implies \cancel{{\dfrac{40000}{16}}} = p

\implies 2500 = p

\implies p = 2500

\huge\bold{\mathbb{HENCE}}

p = 2500

Principle =p = 2500.

\huge\bold{\mathbb{THEREFORE}}

The sum is Rs.\: 2500.

\huge\bold{\mathbb{DONE}}

Similar questions