Math, asked by kurapatiamulya8, 9 months ago

A certain sum in certain time becomes Rs 560 at the rate of 6% per annum at simple interest and the same sum amount to Rs 320 at the rate of 2% in same duration. Find the sum and time​

Answers

Answered by mysticd
3

 Let \: the \: Principal = Rs \: P

 and \: Time = T \: years

 i) Amount ( A_{1} ) = Rs \: 560

 Rate \: of \: interest (R_{1}) = 6\% \: p.a

 A_{1} = P\Big( 1 + \frac{TR_{1}}{100}\Big)

 \implies 560 = P\Big( 1 + \frac{6T}{100}\Big) \: --(1)

 ii) Amount ( A_{2} ) = Rs \: 320

 Rate \: of \: interest (R_{2}) = 2\% \: p.a

 A_{2} = P\Big( 1 + \frac{TR_{2}}{100}\Big)

 \implies 320 = P\Big( 1 + \frac{2T}{100}\Big) \: --(2)

 \red { Do \: (1) \div (2) }, we \:get

 \implies \frac{560}{320} = \frac{ P\Big( 1 + \frac{6T}{100}\Big)}{P\Big( 1 + \frac{2T}{100}\Big)}

 \implies \frac{7}{4} =  \frac{ \Big( \frac{100+6T}{100}\Big)}{\Big( \frac{100+2T}{100}\Big)}

 \implies \frac{7}{4} = \frac{100+6T}{100+2T}

 \implies 7(100+2T) = 4(100+6T)

 \implies 700+14T= 400+24T

 \implies 700 - 400= 24T - 14T

 \implies  10T = 300

 \implies  T = 30 \: years

/* Put T = 30 in equation (1) , we get */

 560 = P \Big ( 1 + \frac{6 \times 30 }{100} \Big)

 \implies 560 = P\Big ( \frac{(100+180)}{100} \Big)

 \implies 560 = P\Big ( \frac{280}{100} \Big)

 \implies P = \frac{560 \times 100}{280}

 \implies P = Rs \: 200

Therefore.,

 \green { Required \: sum (P) = Rs \: 200 } \\\green { and \: Time = 30 \: years }

•••♪

Answered by codiepienagoya
5

Given:

a_1=560\\r_1=6\%\\a_2=320\\r_2=2\%\\

To find:

t,p=?

Solution:

Formula:

\bold{A=P(1+r)^t}

Let p=P and t= T

put the given value in the above formula:

\to 560=P(1+\frac{6T}{100}).............(i)\\

\to 320=P(1+\frac{2T}{100}).............(ii)\\

Divide the equation (i) from the equation (ii):

\Rightarrow \frac{560}{320} =\frac{P(1+\frac{6T}{100})}{P(1+\frac{2T}{100})}\\\\\Rightarrow \frac{56}{32} =\frac{P(1+\frac{6T}{100})}{P(1+\frac{2T}{100})}\\\\\Rightarrow \frac{7}{4} =\frac{(\frac{100+6T}{100})}{(\frac{100+2T}{100})}\\\\\Rightarrow \frac{7}{4} =(\frac{100+6T}{100} \times \frac {100}{100+2T})\\\\\Rightarrow \frac{7}{4} =(\frac{100+6T}{1} \times \frac {1}{100+2T})\\\\\Rightarrow \frac{7}{4} =(\frac{100+6T}{100+2T})\\\\\Rightarrow 7 \times (100+2T) = 4\times (100+6T)\\\\

\Rightarrow  700+14T = 400+24T\\\\\Rightarrow  700- 400=24T-14T \\\\\Rightarrow  300=10T\\\\\Rightarrow  T= \frac{300}{10}\\\\\Rightarrow  T= 30\\

put the value of the T in equation (i) and (ii):

\ Equation (i): \\\\ \to 560=P(1+\frac{6T}{100})\\\\\to 560=P(1+\frac{6\times 30}{100})\\\\\to 560=P(1+\frac{180}{100})\\\\\to 560=P(1+\frac{18}{10})\\\\\to 560=P(\frac{10+18}{10})\\\\\to 560=P(\frac{28}{10})\\\\\to  P= \frac{560 \times 10}{28}\\\\\to  P= 20 \times 10\\\\\to P=200

\ Equation (ii): \\\\ \to 320=P(1+\frac{2T}{100})\\\\\to 320=P(1+\frac{2\times 30}{100})\\\\\to 320=P(1+\frac{60}{100})\\\\\to 320=P(1+\frac{6}{10})\\\\\to 320=P(\frac{10+6}{10})\\\\\to 320=P(\frac{16}{10})\\\\\to  P= \frac{320 \times 10}{16}\\\\\to  P= 20 \times 10\\\\\to P=200

The final value of P and T is 200 and 30

Similar questions