Math, asked by akarshsingh7965, 10 months ago

a certain sum of money amounts to rupees 6300 in 2 years and 7875 in 3 years 9 months at simple interest the rate of interest per annum is​

Answers

Answered by lataprajapati69
3

Answer:

Let P be the initial sum and r be the annual rate of interest,

Since, the amount formula in simple interest,

A=P+\frac{P\times r\times t}{100}A=P+

100

P×r×t

Where,

t = number of years,

Here, if t = 2 years then A = 6300,

\implies 6300 = P+\frac{P\times r\times 2}{100}=P+\frac{Pr}{50}⟹6300=P+

100

P×r×2

=P+

50

Pr

\implies P(1+\frac{r}{50}) = 6300\implies P = \frac{6300}{1+\frac{r}{50}}⟹P(1+

50

r

)=6300⟹P=

1+

50

r

6300

If t = 3 years 9 months = 3\frac{3}{4}3

4

3

years then A = 7875,

\implies 7875 = P + \frac{P\times r\times 3\frac{3}{4}}{100}=P+\frac{P\times r\times \frac{15}{4}}{100}=P(1+\frac{3r}{80})⟹7875=P+

100

P×r×3

4

3

=P+

100

P×r×

4

15

=P(1+

80

3r

)

By substituting the value of P,

7875 = \frac{6300}{1+\frac{r}{50}}((1+\frac{3r}{80})7875=

1+

50

r

6300

((1+

80

3r

)

7875(1+\frac{r}{50}) = 6300 + \frac{18900r}{80}7875(1+

50

r

)=6300+

80

18900r

7875+157.5r= 6300 + 236.25r7875+157.5r=6300+236.25r

7875 - 6300 = 236.25r - 157.5r7875−6300=236.25r−157.5r

1575 = 60.75r1575=60.75r

\implies r = \frac{1575}{60.75}=25.93\%⟹r=

60.75

1575

=25.93%

Similar questions