A certain sum of money at compound interest becomes 7396in 2years and 7950.70in 3years find the rate of interest
Answers
Answered by
2
Let the principal be P
Case i:
CI=7396
CI=p((1+r/100)^t
7396=P( 1+r/100)^2
P=7396x10000/ (100+r)^2 ..................1
case ii:
CI= 7950.70
P=7950.70x1000000/(100+r)^3 ..............2
from 1 and 2 we get
7396x10000/ (100+r)^2 =7950.70x1000000/(100+r)^3
7396=795070/(100+r)
100+r =795070 / 7396
r= (795070 / 7396)-100
r=(795070 - 739600)/ 7396
r=55470/7396
r= 7.5%
Hope this Helps you.
Case i:
CI=7396
CI=p((1+r/100)^t
7396=P( 1+r/100)^2
P=7396x10000/ (100+r)^2 ..................1
case ii:
CI= 7950.70
P=7950.70x1000000/(100+r)^3 ..............2
from 1 and 2 we get
7396x10000/ (100+r)^2 =7950.70x1000000/(100+r)^3
7396=795070/(100+r)
100+r =795070 / 7396
r= (795070 / 7396)-100
r=(795070 - 739600)/ 7396
r=55470/7396
r= 7.5%
Hope this Helps you.
Answered by
0
Step-by-step explanation:
Let the principal be P
Case i:
CI=7396
CI=p((1+r/100)^t
7396=P( 1+r/100)^2
P=7396x10000/ (100+r)^2 ..................1
case ii:
CI= 7950.70
P=7950.70x1000000/(100+r)^3 ..............2
from 1 and 2 we get
7396x10000/ (100+r)^2 =7950.70x1000000/(100+r)^3
7396=795070/(100+r)
100+r =795070 / 7396
r= (795070 / 7396)-100
r=(795070 - 739600)/ 7396
r=55470/7396
r= 7.5%
Hope this Helps you.
Read more on Brainly.in - https://brainly.in/question/1765587#readmore
Similar questions