Math, asked by MustYouknow, 9 months ago

A challenge for all brainlics! ☺☺

Prove :-

 3 = \sqrt{1 + 2 \sqrt{1 + 3 \sqrt{1 + 4 \sqrt{1 + ...} } } }


No Spam .

❤❤​​

Answers

Answered by Anonymous
5

Answer:

 3 = \sqrt{1 + 2 \sqrt{1 + 3 \sqrt{1 + 4 \sqrt{1 + ...} } } }

Step-by-step explanation:

We can write,

 \begin{lgathered}\sf \because 3 = \sqrt{9} . \\ \\ \sf = \sqrt{1 + 8} . \\ \\ \sf = \sqrt{1 + 2 \times 4} . \\ \\ \sf = \sqrt{1 + 2 \sqrt{16} } . \\ \\ \sf \sf = \sqrt{1 + 2 \sqrt{1 + 15} } . \\ \\ \sf = \sqrt{1 + 2 \sqrt{1 + 3 \times 5} } . \\ \\ \sf= \sqrt{1 + 2\sqrt{1 + 3 \sqrt{25} } } . \\ \\ \sf = \sqrt{1 + 2 \sqrt{1 + 3 \sqrt{1 + 24} } } . \\ \\ \sf = \sqrt{1 + 2 \sqrt{1 + 3 \sqrt{1 + 4 \times 6} } } . \\ \\ \sf = \sqrt{1 + 2 \sqrt{1 + 3 \sqrt{1 + 4 \sqrt{36} } } } . \\ \\ \pink{ \boxed{ \orange{ \sf = \sqrt{1 + 2 \sqrt{1 + 3 \sqrt{1 + 4 \sqrt{1 + ......} } } } .}}}\end{lgathered}

Hence, it is proved.

Answered by Bᴇʏᴏɴᴅᴇʀ
1

ANSWER:-

Given:-

3 = \sqrt{1 + 2 \sqrt{1 + 3 \sqrt{1 + 4 \sqrt{1 + ...} } } }

The following can be written as:-

\longrightarrow{3 = \sqrt{9}}

We have:-

 = \sqrt{1 + 8}

 = \sqrt{1 + 2 \times 4}

 = \sqrt{1 + 2 \sqrt{16} }

 = \sqrt{1 + 2 \sqrt{1 + 15} }

 = \sqrt{1 + 2 \sqrt{1 + 3 \times 5} }

 = \sqrt{1 + 2\sqrt{1 + 3 \sqrt{25} } }

 = \sqrt{1 + 2 \sqrt{1 + 3 \sqrt{1 + 24} } }

 = \sqrt{1 + 2 \sqrt{1 + 3 \sqrt{1 + 4 \times 6} } }

 = \sqrt{1 + 2 \sqrt{1 + 3 \sqrt{1 + 4 \sqrt{36} } } }

{ \boxed{\bf{= \sqrt{1 + 2 \sqrt{1 + 3 \sqrt{1 + 4 \sqrt{1 + ......} } } } }}}

Hence Proved.✅

Similar questions