Math, asked by Anonymous, 1 month ago

A Challenge !

 \quad \qquad { \bigstar { \underline { \boxed { \bf { \red { \int \dfrac{x²}{( x Sinx + Cos x )²} dx }}}}}}{\bigstar}

Answers

Answered by XItzLittleDudeX
2

Answer:

refer to the above attachment....

I hope it helpful to you...

Attachments:
Answered by mathdude500
10

\large\underline{\sf{Solution-}}

Given integral is

\rm :\longmapsto\:\displaystyle\int\sf  \frac{ {x}^{2} }{(xsinx + cosx) {}^{2} } \: dx

Let consider,

\red{\rm :\longmapsto\:\dfrac{d}{dx}(xsinx + cosx)}

 \red{\rm \:  =  \: x\dfrac{d}{dx}sinx + sinx\dfrac{d}{dx}x + \dfrac{d}{dx}cosx}

 \red{\rm \:  =  \: xcosx + sinx  - sinx}

 \red{\rm \:  =  \: xcosx }

So, we have to make this term in numerator,

So, given integral can be rewritten as

\rm :\longmapsto\:\displaystyle\int\sf  \frac{ {x}^{2}  \times cosx}{(xsinx + cosx) {}^{2} }  \times  \frac{1}{cosx} \: dx

\rm \:  =  \: \:\displaystyle\int\sf  \frac{ (xcosx)(xsecx)}{(xsinx + cosx) {}^{2} }  \: dx

can be rewritten as

\rm \:  =  \: \displaystyle\int\sf  \frac{(xcosx)}{ {(xsinx + cosx)}^{2} } \times (xsecx) \: dx

Now, using integration by parts, we get

\rm= xsecx\displaystyle\int\sf  \frac{(xcosx)}{ {(xsinx + cosx)}^{2} }dx - \displaystyle\int\sf \bigg[ \dfrac{d}{dx}xsecx\displaystyle\int\sf  \frac{xcosx}{ {(xsinx + cosx)}^{2} }dx\bigg]dx

Now, Consider

\red{\rm :\longmapsto\:\dfrac{d}{dx}xsecx}

 \red{\rm \:  =  \: x\dfrac{d}{dx}secx + secx\dfrac{d}{dx}x}

 \red{\rm \:  =  \: xsecx \: tanx + secx}

 \red{\rm \:  =  \: \dfrac{xsinx}{ {cos}^{2} x}  + \dfrac{1}{cosx} }

 \red{\rm \:  =  \: \dfrac{xsinx + cosx}{ {cos}^{2} x} }

Now, Consider

\red{\rm :\longmapsto\:\displaystyle\int\sf  \frac{xcosx}{ {(xsinx + cosx)}^{2} }}

To evaluate this integral, Substitute

\red{\rm :\longmapsto\:xsinx + cosx = y}

\red{\rm :\longmapsto\:\dfrac{d}{dx}(xsinx + cosx) = \dfrac{d}{dx}y}

\red{\rm :\longmapsto\:xcosx \: dx \:  =  \: dy}

So, above integral can be rewritten as

 \red{\rm \:  =  \: \displaystyle\int\sf  \frac{dy}{ {y}^{2} } }

 \red{\rm \:  =  \: \dfrac{ {y}^{ - 2 + 1} }{ - 2 + 1} }

 \red{\rm \:  =  \: \dfrac{ {y}^{ - 1} }{ - 1}}

 \red{\rm \:  =  \:  - \dfrac{1}{y} }

 \red{\rm \:  =  \:  - \dfrac{1}{xsinx + cosx} }

So, Now given integral can be reduced to

\rm =\dfrac{ - xsecx}{xsinx + cosx} + \displaystyle\int\sf \dfrac{xsinx + cosx}{ {cos}^{2} x} \times \dfrac{1}{xsinx + cosx} \: dx

\rm =\dfrac{ - xsecx}{xsinx + cosx} + \displaystyle\int\sf  {sec}^{2} x \: dx

\rm =\dfrac{ - xsecx}{xsinx + cosx} + tanx + c

Hence,

\boxed{ \tt{ \: \displaystyle\int\sf  \frac{ {x}^{2} }{ {(xsinx + cosx)}^{2} }dx =  \dfrac{ - xsecx}{xsinx + cosx} + tanx + c \: }}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information :-

\begin{gathered}\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \displaystyle \int \rm \:f(x) \: dx\\ \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf kx + c \\ \\ \sf sinx & \sf - \: cosx+ c \\ \\ \sf cosx & \sf \: sinx + c\\ \\ \sf {sec}^{2} x & \sf tanx + c\\ \\ \sf {cosec}^{2}x & \sf - cotx+ c \\ \\ \sf secx \: tanx & \sf secx + c\\ \\ \sf cosecx \: cotx& \sf - \: cosecx + c\\ \\ \sf tanx & \sf logsecx + c\\ \\ \sf \dfrac{1}{x} & \sf logx+ c\\ \\ \sf {e}^{x} & \sf {e}^{x} + c\end{array}} \\ \end{gathered}\end{gathered}

\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf 0 \\ \\ \sf sinx & \sf cosx \\ \\ \sf cosx & \sf  -  \: sinx \\ \\ \sf tanx & \sf  {sec}^{2}x \\ \\ \sf cotx & \sf  -  {cosec}^{2}x \\ \\ \sf secx & \sf secx \: tanx\\ \\ \sf cosecx & \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  & \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx & \sf \dfrac{1}{x}\\ \\ \sf  {e}^{x}  & \sf  {e}^{x}  \end{array}} \\ \end{gathered}

Similar questions