Math, asked by Anonymous, 4 days ago

A Challenging Question :-

 { \bigstar { \underline { \boxed { \red { \bf { \dfrac{d²y}{dt²} + A( t) \dfrac{dy}{dt} + B(t)y(t) = g(t) }}}}}}{\bigstar}

Find the solution in the form of volterra Integral (:


Standard :- Msc 3rd year​

Answers

Answered by Brainlypieoker
32

Answer:

 { \bigstar { \underline { \boxed { \red { \bf { \dfrac{d²y}{dt²} + A( t) \dfrac{dy}{dt} + B(t)y(t) = g(t) }}}}}}{\bigstar}</p><p>

Multiply t and t to get t2.

 \frac{d(y)}{dt^{2} } dt^{2}  \frac{d(y)}{dt} byt = gt

To multiply powers of the same base, add their exponents. Add 2 and 1 to get 3.

 \frac{d(y)}{dt^{2} }at^{3}  \frac{d(y)}{dt} by = gt

The equation is in standard form.

0 = gt

This is false for any a

a\:∈ \:

Answered by sajan6491
9

\dfrac{d²y}{dt²} + A( t) \dfrac{dy}{dt} + B(t)y(t) = g(t)

\dfrac{d²y}{dt²} + At\dfrac{dy}{dt} + Btyt= gt

{d}^{2-1}y{t}^{-2}+At\times \frac{dy}{dt}+Btyt=gt

{d}^{1}y{t}^{-2}+At\times \frac{dy}{dt}+Btyt=gt

dy{t}^{-2}+At\times \frac{dy}{dt}+Btyt=gt

dy\times \frac{1}{{t}^{2}}+At\times \frac{dy}{dt}+Btyt=gt

\frac{dy\times 1}{{t}^{2}}+At\times \frac{dy}{dt}+Btyt=gt

\frac{dy}{{t}^{2}}+At\times \frac{dy}{dt}+Btyt=gt

\frac{dy}{{t}^{2}}+At\times \frac{y}{t}+Btyt=gt

 \frac{dy}{{t}^{2}}+Ay+Btyt=gt

 \frac{dy}{{t}^{2}}+Ay+Bt {}^{2} y=gt

y(\frac{d}{{t}^{2}}+A+B{t}^{2})=gt

\frac{d}{{t}^{2}}+A+B{t}^{2}=\frac{gt}{y}

A+B{t}^{2}=\frac{gt}{y}-\frac{d}{{t}^{2}}

A=\frac{gt}{y}-\frac{d}{{t}^{2}}-B{t}^{2}

Similar questions