Physics, asked by shivamarora4605, 10 months ago

A charge q=4muC has as instantaneous velociyt v=(2hati-3hatj+hatk)xx10^6m/s in a uniform magnetic field B=(2hati+5hatj-3hatk)xx10^-2T. What is the force on the charge?

Answers

Answered by Fatimakincsem
0

Hence the value of force on the charge is − 0.16 i ^  − 0.32  j ^  + − 0.64  k ^

Explanation:

Given data:

  • q = 4 m.u.C
  • v = (2 hati - 3 hat j + hat k) x 10^6 m/s
  • B = (2 hati + 5 hat j - 3 hat k) x 10^-2 T

F  = q  v  ×  B  

Where q has a positive or negative sign

On substituting, we get

− 0.16 i ^  − 0.32  j ^  + − 0.64  k ^

Hence the value of force on the charge is − 0.16 i ^  − 0.32  j ^  + − 0.64  k ^

Answered by sanjeevk28012
3

Given :

The magnitude of charge = q = 4 \mu c

The instantaneous velocity = v =  ( \vec{2i} -  \vec{3j} + \vec{k} ) × 10^{6}  m/s

The magnitude of magnetic field = B =  ( \vec{2i} +  \vec{5j} - \vec{3k} ) × 10^{-2}  T

To Find :

The force on the charge

Solution :

Let The force on the charge = F

Force  = q  v  ×  B  

Where q is the charge with positive or negative sign

            v is the charge velocity

            B is the magnetic field

Now,

 Substitute the value of q v B

So,   F = q × v  ×  B  

          = 4 \mu c  × (  \vec{2i} -  \vec{3j} + \vec{k} ) × 10^{6}  m/s  ×   ( \vec{2i} +  \vec{5j} - \vec{3k} ) × 10^{-2}  T

    Applying vector property

       i.e  ( i . i ) = ( j . j ) = ( k . k ) = 1

      And (i . j ) = ( j .k) = ( k . i ) = 0

∴    F = 4 \mu c  × (  \vec{2i} -  \vec{3j} + \vec{k} ) × 10^{6}  m/s  ×   ( \vec{2i} +  \vec{5j} - \vec{3k} ) × 10^{-2}  T

        =  4 × [ (\vec{2i} . \vec{2i}) + (\vec{2i} . \vec{5j}) - (\vec{2i} . \vec{3k}) - ( \vec{3j} . \vec{2i} ) - ( \vec{3j} . \vec{5j} ) + (\vec{3j} . \vec{3k}) + (\vec{k} . \vec{2i} ) +

            (\vec{k} . \vec{5j} ) - ( \vec{k} . \vec{3k}) ]

        = 4 × [ 4 + 0 - 0 - 0 - 15 + 0 + 0 + 0 - 3 ]

        = 4 × ( 4 - 15 - 3 )

        = 4 × ( 4 - 18 )

        = 4 × ( - 14 )

i.e Force = - 56

So, The Force on the charge = F = \left | -56 \right |  = 56 N

Hence, The Force on the charge is 56  N    Answer

Similar questions