Physics, asked by electricalsganesh21, 3 months ago

A charge +q exerts a force of magnitude -0.2N on another charge -2q. If they are separated by 36 cm. Determine the value of q

1) 2.2 micro-coulomb
2) 1.2 micro-coulomb
3)1.18 micro-coulomb
4) 12 micro-coulomb

Answers

Answered by MagicalBeast
0

Given :

  • 1st Charge = +q
  • 2nd charge = -2q
  • Distance between them = 36cm
  • Electrostatic Force between them = -0.2N

To find :

Value of q

Formula used :

 \sf \: F_e \:  =  \dfrac{k \:  \times  q_{1} \times \: q_{2} }{ {r}^{2} }

Here,

  • Fₑ = Electrostatic Force
  • q₁ and q₂ are charge on two bodies
  • r is distance between them

Solution :

Putting value in above formula we get,

\sf \: \implies \:   - 0.2N \:  =  \dfrac{9 \times 10^9 \:  \times  q \times \: (-2q) }{ {(36cm)}^{2} }

\sf \: \implies \:  -  0.2N \:  =  \dfrac{9 \times 10^9 \:  \times \:  - 2 {q}^{2} }{ {(0.36m)}^{2} }

\sf \: \implies \: {q}^{2} \:  =    \:   \dfrac{   - 0.2N \:   \times {(0.36m)}^{2} }{9 \times 10^9 \:  \times \:  - 2  }

\sf \: \implies \: {q}^{2} \:  =    \:   \dfrac{    0.1 \:   \times 0.1296 }{9 \times 10^9 \:    } {C}^{2}

\sf \: \implies \: {q}^{2} \:  =    \:   \dfrac{    0.01296 }{9 \times 10^9 \:    } {C}^{2}

\sf \: \implies \: {q}^{2} \:  =    \:   \dfrac{    0.00144}{  10^9 \:    } {C}^{2}

\sf \: \implies \: {q}^{2} \:  =    \:   \dfrac{    144 \times  {10 }^{ - 5}  }{ 10^9 \:    } \:  {C}^{2}

\sf \: \implies \: {q}^{2} \:  =    \:      144 \times  {10 }^{( - 5 - 9)}   {C}^{2}

\sf \: \implies \: {q}^{2} \:  =    \:      144 \times  {10 }^{( - 14)}   {C}^{2}

\sf \: \implies \: {q}\:  =    \sqrt{144 \times  {10 }^{( - 14)} }  \:       C

\sf \: \implies \: {q}\:  =     \pm \: 12 \times  {10}^{ - 7} C

\sf \: \implies \: {q}\:  =     \pm \: 1.2 \times  {10}^{ - 6} C

\sf \: \implies \:  \bold{{q}\:  =     \pm \: 1.2  \: micro C}

Note - As in option we are given only positive values, so

\sf \: \implies \:  \:  \bold{{q}\:  =  \: 1.2  \: micro C}

ANSWER :

option 2) 1.2 micro Coulomb

Similar questions