Physics, asked by janmuskaan076, 11 months ago

A charge +q is revolving around a stationary charge +Q of radius r if force b/w carge is F then work done of this motion will be?​

Answers

Answered by nirman95
33

Answer:

Given:

+q charge is revolving around a charge +Q in a radius "r". Force between the charge is F

To find:

Work done by the revolving charge in this kind of motion.

Concept:

Work done by any force is given as the dot product of Force and Displacement.

Mathematically,

 \boxed{ \sf{ \large{work =  \vec F. \: \vec r}}}

 \sf{ \implies \: work = f \times r \times  \cos( \theta)}

Now in a circular motion , the force vector and the displacement vector is at 90° with another with one another.

We know that cos (90°) = 0

 \sf{ \implies \: work = f \times r \times  \cos( 90 \degree)}

 \sf{ \implies \: work = f \times r \times  ( 0)}

 \sf{ \implies \: work =  0 \: joules}

So , no work is done .

Attachments:
Answered by Anonymous
19

\blue{\underline{ \huge{ \blue{\boxed{ \mathfrak{\fcolorbox{red}{orange}{\purple{Answer\: :-}}}}}}}} \\  \\  \star \rm \:  \red{Given} \\  \\   \implies \rm \: a \: charge \:  + q \: is \: revolving \: around \: stationary \\  \rm \: charge \:   + Q  \: of \: radius \: r  \:  and \: force \: between  \: them \: is \: F \\  \\  \star \rm  \:  \red{To \: Find} \\  \\  \implies \rm \:  net \: work \: done \: in \: this \: type \: of \: circular \: motion \\  \\  \star \rm \:  \red{Formula} \\  \\  \implies \rm \: net \: work \: done \: in \: any \: kind \: of \: motion \: is \:  \\  \rm \: mathematically \: given \: by... \\  \\    \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \underline{\boxed{ \bold{ \pink{ \sf{W =  \vec{F}  \:   {\tiny{ \bullet}} \:  \vec{d}}}}}} \\  \\  \implies \rm \: it \: means \: that \: work \: done \: is \: dot \: product \: of \\  \rm \: force \: and \: displacement... \\  \\  \implies \rm \: dot \: multipication \: between \: two \: quntities  \\  \rm is \: given \: by... \\  \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \underline{ \boxed{ \bold{ \pink{ \sf{ \vec{A} \: { \tiny{ \bullet}} \:  \vec{B} = AB \cos\theta}}}}} \\  \\  \implies \rm \: where \:  \theta = angle \: between \: two \: vectors \\  \\  \star \rm \:  \red{Solution} \\  \\  \implies \rm \: here \: angle \: between \: Force \: and \: displacement \\  \rm \: is \: 90 \degree \\  \\  \implies \rm \: and \: we \: know \: that \: cos90 \degree = 0 \\  \\  \therefore \:  \boxed{ \boxed{ \orange{ \bold{ \rm{W{ \tiny{net}} = 0 \: J}}}}}

Attachments:
Similar questions