A charge q is situated at the origin. Let
,
B
and
C
be the electric fields at the points A(2, -3, -1), B(-1, -2, 4) and 2, -4, 1). Therefore,
Options:
(a)
⊥E
B
(b) no work is done in moving a test charge
from B to C.
(c)
∣=3∣E
B
∣
(d)
=−E
C
Note:
Among the given four alternatives out of which ANY NUMBER OF ALTERNATIVES (1 , 2 , 3 , 4) MAY BE CORRECT.
____________________________
Explanationrequired★
Answers
AnswEr :
Given,
(2,−3,−1)⟶2
(2,−4,1)⟶
A
is perpendicular to
B
, their dot product has to be zero.
A general depiction of dot product is :
Electric Field due to a point charge :
E=
r
2
Kq
Now,
E
A
Similarly,
E
B
Consider only the vector parts of E_A & E_B
=(2)(−1)+(−3)(−2)+(−1)(4)
⟶E
We notice that the respective components of
B
and
C
aren't equal.
Thus, option (d) is incorrect.
To bring a test charge from B to C,
)
Also,
.r
On dotting both the vectors, we obtain :
Therefore,
W
Option (a) & (b) are correct.
Here,
Magnitude of \sf E_A = \dfrac{Kq}{14}E
and
Dividing above expressions, we get :
Option (c) is correct too.
Answer:
AnswEr :
Given,
\begin{gathered}\begin{gathered} \sf r_A (2,-3,-1) \longrightarrow 2 \hat{i} - 3 \hat{j} - \hat{k} \\ \sf r_B (-1,-2,4) \longrightarrow - \hat{i} - 2 \hat{j} +4 \hat{k} \\ \sf r_C (2,-4,1) \longrightarrow 2 \hat{i} - 4 \hat{j} + \hat{k} \end{gathered}\end{gathered}
r
A
(2,−3,−1)⟶2
i
^
−3
j
^
−
k
^
r
B
(−1,−2,4)⟶−
i
^
−2
j
^
+4
k
^
r
C
(2,−4,1)⟶2
i
^
−4
j
^
+
k
^
(2,−3,−1)⟶2
(2,−4,1)⟶
If \sf E_AEIfE
A
E
A
is perpendicular to \sf E_BEE
B
E
B
, their dot product has to be zero.
A general depiction of dot product is :
\sf a.b = a_1b_1 + a_2b_2 + a_3b_3a.b=aa.b=a
1
b
1
+a
2
b
2
+a
3
b
3
a.b=a
Electric Field due to a point charge :
\begin{gathered}\begin{gathered} \sf \: E = \dfrac{Kq}{r {}^{2} } \: \hat{r} \\ \\ \implies \boxed{ \boxed{ \sf \: E = \dfrac{Kq}{ \mid r {}^{2} \mid} \: \times \dfrac{ \vec{r}}{ |r| } }}\end{gathered}\end{gathered}
E=
r
2
Kq
r
^
⟹
E=
∣r
2
∣
Kq
×
∣r∣
r
E=
r
2
Kq
Now,
\begin{gathered}\begin{gathered}\sf E_A = \dfrac{Kq}{{\sqrt{2^2 + (-3)^2 + (-1)^2}}^{2}} \times \dfrac{2\hat{i} - 3 \hat{j} - \hat{k}}{\sqrt{2^2 + (-3)^2 + (-1)^2}} \\ \\ \longrightarrow \sf E_A = \dfrac{Kq(2\hat{i} - 3 \hat{j} - \hat{k})}{14 \sqrt{14}}\\ \end{gathered}\end{gathered}
E
A
=
2
2
+(−3)
2
+(−1)
2
2
Kq
×
2
2
+(−3)
2
+(−1)
2
2
i
^
−3
j
^
−
k
^
⟶E
A
=
14
14
Kq(2
i
^
−3
j
^
−
k
^
)
E
A
Similarly,
\begin{gathered}\begin{gathered}\sf E_B = \dfrac{Kq(- \hat{i} - 2 \hat{j} +4 \hat{k})}{21 \sqrt{21}} \\ \\ \sf E_C = \dfrac{Kq(2\hat{i} -4\hat{j} + \hat{k})}{21 \sqrt{21}}\\ \end{gathered}\end{gathered}
E
B
=
21
21
Kq(−
i
^
−2
j
^
+4
k
^
)
E
C
=
21
21
Kq(2
i
^
−4
j
^
+
k
^
)
E
B
Consider only the vector parts of E_A & E_B
\begin{gathered}\begin{gathered} \sf E_A. E_B = (2)(-1) + (-3)(-2) + (-1)(4) \\ \\ \longrightarrow \sf E_A. E_B = 6 - 6 \\ \\ \longrightarrow \sf E_A. E_B = 0 \longrightarrow (a)\end{gathered}\end{gathered}
E
A
.E
B
=(2)(−1)+(−3)(−2)+(−1)(4)
⟶E
A
.E
B
=6−6
⟶E
A
.E
B
=0⟶(a)
=(2)(−1)+(−3)(−2)+(−1)(4)
⟶E
We notice that the respective components of \sf E_BEE
B
E
B
and \sf E_CEE
C
E
C
aren't equal.
Thus, option (d) is incorrect.
To bring a test charge from B to C,
\sf W_{BC} = q_o(V_C - V_B)W < /p > < p > BCW
BC
=q
o
(V
C
−V
B
)W</p><p>BC
)
Also,
\sf V = -\vec{E}.{r}V=− < /p > < p > EV=−
E
.rV=−</p><p>E
.r
On dotting both the vectors, we obtain :
\sf V_B = V_C = - \dfrac{Kq}{\sqrt{21}}V < /p > < p > BV
B
=V
C
=−
21
Kq
V</p><p>B
Therefore,
\begin{gathered}\begin{gathered}\sf W_{BC} = \dfrac{Kqq_o}{\sqrt{21}}\{- 1 - (-1) \} \\ \\ \implies \sf W_{BC} = 0 \ J \longrightarrow (b) \end{gathered}\end{gathered}
W
BC
=
21
Kqq
o
{−1−(−1)}
⟹W
BC
=0 J⟶(b)
W
Option (a) & (b) are correct.
Here,
Magnitude of \sf E_A = \dfrac{Kq}{14}E
and \sf E_B = \dfrac{Kq}{21}E < /p > < p > BE
B
=
21
Kq
E</p><p>B
Dividing above expressions, we get :
2|E_A| = 3|E_B|2∣E
A
∣=3∣E
B
∣
Option (c) is correct too.