Physics, asked by colorstones, 2 months ago

a charged particle of 2mc is released from rest in electric field e=2x10^3n/c .find the magnitude and direction of force.

Please answer!!
don't spam!!​

Answers

Answered by allysia
106

Answer:

\\\tt  4 \times  {10}^{ - 3} N

Explanation:

Force on a charge in an electric feild is given by qE

where q = charge

E = electric feild

Using given data F =

\\\tt(2 \times  {10}^{ - 6} )(2 \times  {10}^{3} ) N \\ \\\tt = 4 \times  {10}^{ - 3} N

Since electric feild and charge both are +ve it's direction will be away from the feild.

Answered by BrainlyRish
43

Given : A charged particle of 2mc ( q ) in Electrical feild which is E = 2 × 10³ N / C ( E ) .

Exigency To Find : Magnitude and direction of force.

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

⠀⠀⠀⠀⠀Given that ,

  • Electric feild which is E = 2 × 10³ N / C ( E ) .
  • The Charge is 2 mc ( or micro columb )

⠀⠀⠀⠀⠀Converting the charge from mc ( or micro coulomb ) to c ( or Coulomb ) :

 :\implies \sf Charge \:(\:q\:)\: = \: 2 \: mC \: \\\\ :\implies \sf Charge \:(\:q\:)\: = \: 2 \times 10^{-6} \: C \:\qquad \:\bigg\lgroup \sf{  1 \: mC \:(or \:micro\: coulomb)\:=\:1 \times 10^{-6}\: C\: ( or \:coulomb) }\bigg\rgroup\\\\ :\implies \sf Charge \:(\:q\:)\: = \: 2 \times 10^{-6} \: C  \: \\\\  \qquad \therefore \pmb{\underline{\purple{\:Charge\:(\: q\:)\:=\:\:  2 \:\times 10^{-6} \: C }} }\:\:\bigstar \\

⠀⠀⠀⠀⠀Finding Magnitude of Force :

\dag\:\:\frak{ As,\:We\:know\:that\::}\\\\\qquad\bigstar\:\bf Formula\:for \:Force\: \::\\

\qquad \dag\:\:\bigg\lgroup \sf{ \qquad Force \:(\: F\:)\:=\:\:Eq \qquad}\bigg\rgroup \\\\

⠀⠀⠀⠀⠀Here , f is the magnitude of Force , q is the charge & E is the Electric feild .

\dashrightarrow \sf\:\: Force \:(\: F\:)\:=\:\:Eq  \:\:\\\\ \qquad  \underline {\boldsymbol{\star\:Now \: By \: Substituting \: the \: known \: Values \::}}\\\\ \dashrightarrow \sf\:\: Force \:(\: F\:)\:=\:\:Eq  \:\:\\\\  \dashrightarrow \sf\:\: Force \:(\: F\:)\:=\:\bigg(\:  2 \:\times 10^{-6} \:  \:\bigg)\:C \:\times  \bigg( \:2 \times 10^3 \:\bigg) N / C \:\:\\\\   \dashrightarrow \sf\:\: Force \:(\: F\:)\:=\:\bigg(\:  2 \:\times 10^{-6} \: \:\bigg)\:\cancel {C }\:\times  \bigg( \:2 \times 10^3 \:\bigg) N/\cancel {C}\:\:\\\\   \dashrightarrow \sf\:\: Force \:(\: F\:)\:=\:\bigg(\:  2 \:\times 10^{-6} \:  \:\bigg)\:\times  \bigg( \:2 \times 10^3 \:\bigg) N \:\:\\\\    \dashrightarrow \sf\:\: Force \:(\: F\:)\:=\:\bigg(\:  4 \:\times 10^{-3} \:  \:\bigg)\:N \:\:\\\\  \qquad \therefore \pmb{\underline{\purple{\:Force \:(\: F\:)\:=\:\:  4 \:\times 10^{-3} \: N }} }\:\:\bigstar \\

⠀⠀⠀⠀⠀Here , F denotes to magnitude of force which is 4 × 10^{-3} N .

⠀⠀⠀⠀⠀\therefore {\underline{ \sf Hence, \:Magnitude \:of\:force \:is\:\bf 4 \times 10^{-3} \:\: N \: }}\\

Since , The Charge and Electric feild both are in Positive " + ve " so it will move radially outward .

Similar questions