Physics, asked by shristikumari4259, 1 month ago

A charged particle q1 is at position (2,-1,3) . The electrostatic force on another charged particle q2 at (0,0,0) is​

Answers

Answered by allysia
72

Answer:

 \\\tt 6.42 \times 10^8 \times q_1 q_2 \  N

Explanation:

Using the coordinates the distance between the particles,

\\\tt \sqrt{(2-0)^2  + (-1+0)^2  + (3-0)^2 } \\\\\tt = \sqrt{ 4 +1 +9 } \\\\\tt  = \sqrt{14} \ units

Fore between them,

 \\\tt F = \dfrac{1}{4 \pi \epsilon_{\circ} }     \dfrac{ q_1 q_2} {r^2 }  \\\tt  F= 9 \times 10^9 \times \dfrac{ q_1 q_2}{(\sqrt{14})^2 } N \\\tt = [9 \times 10^9 \times \dfrac{ q_1 q_2}{14 }]  N \\\\\tt = 6.42 \times 10^8 \times q_1 q_2   N

Answered by viratdhoni187
42

_____________________

  \maltese \: { \underline{ \underline{ \bf{Answer :-}}}}

Given :

  • A charged particle q1 is at position (2,-1,3)
  • Another charged particle q2 at (0,0,0)

To Find:

  • Electrostatic force

Explanation :

 \underline{ \tt \: Position \:  \: vector \:  \:  \vec {d}}

 \bf \:  \vec{d} \:  = (2 - 0) \hat{i} - (1 - 0) \hat{j} + (3 - 0) \hat{k}  = 2 \hat{i} -  \hat{j} \:  + 3 \hat{k}

  \bf \: {d}^{3}  = { ((2 \hat{i} - \hat{j} + 3\hat{k}) \: . \: (2 \hat{i} - \hat{j} + 3\hat{k})) }^{ \frac{3}{2} }

 \pink{ \bf{ {d}^{3}  = 14 \sqrt{14}}}

Electrostatic Force:-

 \bf \: F =  \:  \frac{1}{4\pi \epsilon_{ \circ}}   \:  \frac{q_1q_2}{ {d}^{3} }  \vec{d} \\

 \bf \: F =  \frac{q_1q_2}{4\pi \epsilon_{ \circ}}  \:  \frac{(2 \hat{i} -  \hat{j} - 3 \hat{k})}{14 \sqrt{14} }  \\

 \purple{ \boxed{ \bf{F =  \frac{q_1q_2}{56 \sqrt{14} \pi \epsilon_{ \circ}} } \: (2 \hat{i} -  \hat{j} + 3 \hat{k})}}

_____________________

Similar questions