Math, asked by ahirwarjeetu6243, 1 year ago

A chord AB of a radius 10cm makes a right angle at the centre of the circle.Find the area of the minor and major segments.

Answers

Answered by aquialaska
111

Answer:

Area of Minor Segment = 28.57 cm^2 and Area of Major Segment = 285.72 cm^2

Step-by-step explanation:

Given: Radius of circle, r  = 10 cm

           Angle made by chord at center = 90°

To find: Area of minor and major Segment

Area of Segment = Area of Sector - Area of triangle made by chord and radii.

Area\:of\:Sector\:=\:\frac{\theta}{360^{\circ}}\times\pi r^2

Area\:of\:minor\:Sector\:AOB=\:\frac{90^{\circ}}{360^{\circ}}\times\frac{22}{7}\times 10^2

                                             = \frac{1}{4}\times\frac{22}{7}\times 100

                                             = \frac{550}{7}\:cm^2

Area of ΔAOB = \frac{1}{2}\times base\times heigth

                        = \frac{1}{2}\times OA\times OB

                        = \frac{1}{2}\times 10\times 10

                        = 5\times 10

                        = 50\:cm^2

Area of Minor Segment = \frac{550}{7}-50

                                            = \frac{550-350}{7}

                                            = \frac{200}{7}

                                            = 28.57 cm^2

Area of Major segment = Area of circle - Area of minor segment

                                       = \pi r^2  - 28.57

                                       = \frac{22}{7}\times 10^2  - 28.57

                                       = \frac{22}{7}\times 100  - 28.57

                                       = \frac{2200}{7}  - 28.57

                                       = 314.29  - 28.57

                                       = 285.72 cm^2

Therefore, Area of Minor Segment = 28.57 cm^2 and Area of Major Segment = 285.72 cm^2

Attachments:
Answered by Anonymous
33

Step-by-step explanation:

Here's the required answer!!!

Attachments:
Similar questions