Math, asked by Mister360, 1 month ago

A chord of a circle of radius 10 cm subtends a right angle at the centre. Find the area of the corresponding (i) minor segment (ii) major sector.

Answers

Answered by jaswasri2006
2

Given Data :

  1. θ = 90°
  2. radius (r) = 10 cm

1. Minor Segment :

θ/360° × 2πr = 90/360 × 2 × 3.14 × 10 = ¼×2×10×3.14 = 5×3.14 = 15.7 cm

2. Major Sector :

θ/360 × πr² = ¼ × 3.14 × 100 = 3.14 × 50 = 157 cm²

Mark as Brainliest answer please my friend

Hope this will help u

Answered by amankumaraman11
7

Radius of circle = 10 cm

Angle subtended by chord at the centre = 90°

We know,

 \rm{Area \:  of \:  segment = }\tt{πr²  \frac{θ}{360}  -  \frac{ {r}^{2} }{2}  \sin \theta } \\

 \rm{ Area  \: of \:  \:  sector }= \tt{πr²  \frac{θ}{360} }

Here,

 \rm{Area \:  of \:  minor \:  segment = } \pi {r}^{2}   \times \frac{90}{360}  -  \frac{ {(10)}^{2} }{2}   \sin90 \degree \\  \\  \to \tt\pi {(10)}^{2}  \times  \frac{1}{4}  -  \frac{100}{2}  \times 1 \\  \\ \to \tt\pi \times 25 - 50 \\ \to \tt \green{25\pi - 50} \:  \:  {cm}^{2}

And,

 \rm{ Area  \: of \:  minor\:  sector }= \tt{πr²  \times  \frac{90}{360} } \\  \\  \to \tt \pi \times  {(10)}^{2}  \times  \frac{1}{4}  \\  \\  \to \tt \pi \times 100 \times  \frac{1}{4}  \\  \\ \to \tt  \green{25\pi} \:  \:  {cm}^{2}

So,

Area of major sector = πr² – Area of minor sector

→ πr² – 25π

→ π(r² - 25)

→ π(10² - 25)

→ π(100 - 25)

→ 75π cm²

Hence,

  • Area of minor segment = 25(π – 2) cm²
  • Area of major sector = 75π cm²
Similar questions