Math, asked by Anonymous, 2 months ago

A chord of a circle of radius 12 cm subtends an angle of 120° at the centre. Find the area of the corresponding segment of the circle. (Use π = 3.14 and √3 = 1.73)​

Answers

Answered by XxSonaxX
165

Step-by-step explanation:

Question:-

A chord of a circle of radius 12 cm

subtends an angle of 120° at the centre. Find the area of the corresponding segment of the circle. (Use π = 3.14 and √3 = 1.73)

Answer:-

Solution:</p><p></p><p> \\ Radius, \:  r  \: =  \: 12  \: cm</p><p></p><p> \\ Now, \\  draw  \: a  \: perpendicular \:  OD  \: on \:  chord  \\ AB \:  and \:  it  \: will  \: bisect  \: chord \:  AB.</p><p></p><p> \\ So, AD = DB</p><p></p><p>

 \\ Now,  \\ the \:  area \:  of  \: the  \: minor  \: sector  \: =  \: (θ/360°) \: × \: πr {}^{2} </p><p></p><p> \\ = \:  (120/360) \: × \: (22/7) \: × \: 12 {}^{2} </p><p></p><p> \\ = 150.72 cm2</p><p></p><p>

 \\ Consider \:  the  \: ΔAOB,</p><p></p><p> \\ ∠ OAB  \: =  \: 180°- \: (90°+60°) \:  =  \: 30°</p><p></p><p> \\ Now,  \\ cos 30°  \: =  \: AD/OA</p><p></p><p> \\ √3/2  \: = \:  AD/12</p><p></p><p> \\ Or, \\  AD \:  =  \: 6√3 cm</p><p></p><p>

 \\ We \:  know  \: OD \:  bisects \:  AB.  \\ So,</p><p></p><p> \\ AB \:  = 2×AD \:  =  \: 12√3  \: cm</p><p></p><p> \\ Now, \:  \\  sin 30° \:  =  \: OD/OA</p><p></p><p>

 \\ Or, \:  ½ \:  = \:  OD/12</p><p></p><p> \\ ∴ OD \:  = \:  6 cm</p><p></p><p> \\ So,  \\ the \:  area  \: of  \: ΔAOB  \: =  \: ½ × base × height</p><p></p><p>

 \\ Here, \\  base \:  = AB \:  = \:  12√3  \: and</p><p></p><p> \\ Height \:  =  \: OD \:  =  \: 6</p><p></p><p> \\ So,  \\ area  \: of  \: ΔAOB  \: =  \: ½×12√3×6  \: = \:  36√3 \:  cm \:  =  \: 62.28 cm2</p><p></p><p>

 \\ ∴ \:  Area \:  of \:  the \:  corresponding  \: Minor  \: segment  \\ = Area  \: of  \: the \:  Minor  \: sector \:  – \:  Area  \: of  \: ΔAOB</p><p></p><p> \\ = 150.72 cm2 \: – \:  62.28 cm2  \: =  \: 88.44 cm2</p><p></p><p>

Hence, \: the \: answer \: is \: 88.44 \: cm {}^{2}

Similar questions