Math, asked by 9908770863anji, 1 year ago

a chord of a circle of radius 14 cm substance 120 angle at the centre find the area of corresponding major segment of the circle​

Answers

Answered by sachinarora2001
3

a chord of a circle of radius 14 cm substance 120 angle at the centre find the area of corresponding major segment of the circle......

_________________________

In ∆ OVS

 \frac{ov}{os}  = cos60 \\  \\  \frac{ov}{14}  =  \frac{1}{2}  \\  \\ \boxed{ \underline \bold \red{ ov =  > 7}} \\  \\   \frac{sv}{so} = sin60 \\  \\  \frac{sv}{14}   =   \frac{ \sqrt{3} }{2}    \\  \\  \boxed{ \underline \bold \blue{sv =  > 7 \sqrt{3} }} \\  \\ st = 2sv \\  \\ st =  > 2 \times 7 \sqrt{3}  \\  \\ \boxed { \underline \bold \pink{ st =  > 14 \sqrt{3} }} \\  \\

 \boxed{ \underline \bold \green{area \: of \: triangle  \: ost=  \frac{1}{2}  \times ov \times st}} \\  \\  =  >  \frac{1}{2}  \times 7 \times 14 \sqrt{3}  \\  \\  =  > 49 \sqrt{3}  \\  \\  =  > 49 \times 1.73 \\  \\  =  > 84.77 {cm}^{2}

 \boxed{ \underline \bold \orange{area \: of \: triangle \: ost \:  =  > 84.77 {cm}^{2} }}

 \boxed{ \underline \bold \red{area \: of \: sector \: osut =  >  \frac{theta}{360} \times \pi  {r}^{2} }} \\  \\  =  >  \frac{120}{360}  \times  \frac{22}{7}  \times 14 \times 14 \\  \\  =  > 205.33 {cm}^{2}

 \boxed{ \underline \bold \blue{area \: of \: sector \: osut =  > 205.33 {cm}^{2} }}

Area of sector SUT = Area of sector OSUT - ∆ OST

 =  > 205.33 - 84.77 \\  \\  =  > 120.56 {cm}^{2}

 \boxed{ \underline \bold \green{area \: of \: segment \: sut =  > 120.56 {cm}^{2} }}

Hope it's helps you

Attachments:
Similar questions