Math, asked by vrajkadam7636, 11 months ago

a chord of a circle of radius 14cm subtends an angle 120 degrees at centre.find the area of corresponding major segment of circle?π=3.14

Answers

Answered by empathictruro
16

Answer:

Area of major segment= 410.66cm²

Step-by-step explanation:

Area of major segment= Area of circle - Area of minor segment

                                    = π×r²- π×r²÷3

                                    = 2×π×r²÷3

                                     =2×22×14²÷21

                                      =410.66

Answered by JeanaShupp
6

The area of corresponding major segment of circle is 120.54 sq. cm.

Explanation:

Area of segment : \dfrac{1}{2}(\theta -\sin\theta)\times r^2

, where \theta = Central angle.

r= radius

As per given , we have

\theta=120^{\circ}

In radian ,  \theta=\dfrac{120}{180}\pi=\dfrac{2\pi}{3}

r= 14 cm

Then , the area of corresponding major segment of circle

=  \dfrac{1}{2}(\dfrac{2\pi}{3}-\sin120^{\circ})\times (14)^2

=  \dfrac{1}{2}(\dfrac{2\pi}{3}-\sin2(60^{\circ}))\times (196)

=  (\dfrac{2\pi}{3}-(2\sin60^{\circ}\cos60^{\circ} ))\times (98)\ \ [\because\ \sin2x=2\sin x\cos x]

=  (\dfrac{2\pi}{3}-(2(\dfrac{\sqrt{3}}{2})(\dfrac{1}{2})) )\times (98) [\because\ \sin 60^{\circ}=\dfrac{\sqrt{3}}{2},\ \sin60^{\circ}=\dfrac{1}{2}]

=98(\dfrac{2\pi}{3}-\dfrac{\sqrt{3}}{2})

=98(\dfrac{2(3.14)}{3}-\dfrac{1.73}{2})

=98(1.23)=120.54

Hence, the area of corresponding major segment of circle is 120.54 sq. cm.

# Learn more :

https://brainly.in/question/8739183

Radius of a sector of a circle is 21cm if length of arc of that sector is 55cm find area of the sector

Similar questions