Math, asked by naira9071, 1 year ago

A chord of a circle of radius 15 cm subtends an angle of 60 at the centre . find the areas of the corresponding minor and major segment of the circle.

Answers

Answered by surajrana1
2
824.99. formula is given angle/360multiply by area of circle
Answered by Anonymous
22

\blue\bigstarQUESTION:-

⠀ ⠀⠀

A chord of a circle of radius 15 cm subtends an angle of 60 at the centre find the area of the corresponding minor and major segment of circle

⠀ ⠀⠀

\red\bigstarSOLUTION:-

Given:-

 \sf \bullet \: radius \:  (r) = 15cm \\  \sf \bullet \:  \theta = 60^{0}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \\

⠀ ⠀⠀

Now, area of minor sector

 \sf \implies \dfrac{ \theta}{{360}^{0} } \times  \pi  {r}^{2}

 \implies \sf\dfrac{ {60}^{0} }{ {360}^{0} }  \times 3.14 \times  {(15)}^{2}

 \implies \sf \dfrac{1}{6}  \times 3.14 \times 225

 \implies \sf117.75 \: {cm}^{2}

⠀ ⠀⠀

 \sf \: Area  \: of \:  \triangle AOB

 \sf Draw \: OM\perp AB

In right triangles OMA and OMB

OA=OB⠀ ⠀⠀| radii of the circle |

OM=OM ⠀ ⠀| common side |

\therefore \sf \triangle OMA \cong \triangle OMB \:  \:  \:  |rhs \: congruency|

⠀ ⠀⠀

And

  \sf \angle AOM =\angle BOM \:  \:  \:  \:  |cpct|  \\  \sf \implies \dfrac{1}{2}\angle AOB =  \dfrac{1}{2}  \times (60)^{0}  = 30^{0}

Now , In right triangle OMA

 \sf \: cos {30}^{0}  =  \dfrac{OM}{OA}

 \sf \implies  \dfrac{ \sqrt{3} }{2}  =  \dfrac{OM}{15}

 \implies \sf OM =  \dfrac{ 15 \sqrt{3} }{2} cm

⠀ ⠀⠀

  \sf \: sin {30}^{0} = \dfrac{AM}{OA}

 \implies \sf \dfrac{1}{2}  =  \dfrac{AM}{15}

 \implies \sf \: AM =  \dfrac{15}{2}

\implies \sf \: 2AM = 2 \bigg( \dfrac{15}{2}  \bigg) = 15

 \sf\implies AB=15 cm

Area of triangle AOB

 \implies \sf \dfrac{1}{2}  \times AB\times OM

 \implies \sf \dfrac{1}{2}  \times 15 \times  \dfrac{15 \sqrt{3} }{2}

 \implies \sf \dfrac{225 \sqrt{3} }{4}

 \sf \implies \dfrac{225 \times 1.73}{4}

 \implies \sf  97.3125 \: cm^{2}

⠀ ⠀⠀

Therefore, Area of corresponding minor segment of the circle =area of minor sector -area of triangle AOB

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \implies \sf117.75 - 97.3125

 \:  \:  \:  \:  \:  \:  \:  \:  \:   \: \:  \sf \implies20.4375 \: cm^{2}

⠀ ⠀

And area of the corresponding major segment of the circle

 \:  \:  \:  \:  \:  \:  \:  \:   \implies \sf \pi \:  {r}^{2}  - area \: of \: minor \: segment

 \:  \:  \:  \:  \:  \:  \:  \:  \implies \sf3.14 \times 15 \times 15 - 20.4375

 \: \:  \:  \:  \:  \:  \:  \: \implies \sf706.5 - 20.4375

 \:  \:  \:  \:  \:  \:  \:  \:  \implies \sf686.0625 \: cm^{2}

Attachments:
Similar questions