CBSE BOARD X, asked by chouhanyogesh207, 4 months ago

A chord of a circle of radius 15 cm subtends an angle of 60° at the centre. Find the areas of the corresponding minor and major segments of the circle. (Use π = 3.14 and √3 = 1.73)

Answers

Answered by sneha1124
10

o \: is \: the \: centre \: of \: a \: circle \:  \\ ab \: is \:  a \: chord \\ axb \: is \: a \: major \: arc \\ oa = ob = radius = 15 \\ arc \: axb \: subtends \: an \: angle \: 60 \: deg \\ area \: of \: sector \: aob = 60 \div 360 \times \pi \times r {}^{2}  \\ 60  \div 360 \times 3.14 \times (15) {}^{2}  = 117.75cm {}^{2}  \\ area \: of \: minor \: segment \: (area \: of \: shadedregion) = area \: of \: sector \: aob - area \: of \: traingle  \: aob \\ by \: trigonmetry \\ ac = 15sin30 \\ oc = 15 \: cos \: 30 \\ and \: ab \:  = 2ac \\ ab = 2 \times 15sin30 = 15cm \\ oc \:  = 15cos \: 30 = 15 \times  \sqrt{} 3 \div 2 = 15 \times 1.73 \div 2 = 12.975 = 97.3125cm {}^{2}  \\ area \: of \: triangle \: aob = 0.5 \times 15 \times 12.975 = 97.3125cm {}^{2}  \\ area \: of \: minor \: segment \: (area \: of \: shaded \: region \: ) = 117.75 - 97.3125 = 20.4375cm {}^{2}  \\ area \: of \: major \: segment \:  = area \: of \: circle \:  - area \: of \: minor \: segment \:  \\ =  (3.14 \times 15 \times 15) - 20.4375 \\  = 686.0625cm {}^{2}

Hope it helps you ✔️✔️✔️

please mark me brainliest.....

Attachments:
Similar questions