Math, asked by reenagrg669, 1 month ago

A chord of a circle of radius 15cm subtends an angle of 60° at the centre . find the area of the corresponding minor and major segments of the circle .
(Use pie = 3.14 and √3 = 1.73 )​

Answers

Answered by SachinGupta01
94

 \underline{ \sf \large{Solution - }}

Area of minor segment =

 \sf:  \implies  \rm r^{2}  \bigg[ \dfrac{ \pi \theta}{360}  -   \dfrac{ \sin\theta }{2} \bigg]

 \sf:  \implies   \rm 15^{2}  \bigg[ \dfrac{ 3.14  \times 60}{360}  -   \dfrac{   \sin60    }{2} \bigg]

 \sf:  \implies   \rm 225 \bigg[ \dfrac{ 1.57}{3}  -   \dfrac{   \sqrt{3}     }{2 \times 2} \bigg]

 \sf:  \implies   \rm 225 \bigg[ \dfrac{ 1.57}{3}  -   \dfrac{   1.73  }{4} \bigg]

 \sf:  \implies   \rm 225 \bigg[ \dfrac{ 6.28 - 5.19}{12}  \bigg]

 \sf:  \implies   \rm 225 \bigg[ \dfrac{ 1.09}{12}  \bigg]

 \sf:  \implies   \rm 75 \bigg[ \dfrac{ 1.09}{4}  \bigg]

 \sf:  \implies   \rm 75  \times 0.2725

 \sf:  \implies   \rm 20.4375 \: cm ^{2}

Thus,

➢ Area of minor segment = 20.4375 cm²

Now,

 \sf:  \implies Area  \: of \:  circle =   \pi r ^{2}

 \sf:  \implies   \rm 3.14 \times 15 ^{2}

 \sf:  \implies   \rm 3.14 \times 225

 \sf:  \implies   \rm 706.5 \: cm ^{2}

Thus,  

➢ Area of circle = 706.5 cm²

Now,  

➢ Area of major segment = Area of circle - Area of minor segment.

 \sf:  \implies 706.5 - 20.4375

 \sf:  \implies   \rm 686.0625 \: cm ^{2}

Thus,

Area of major segment = 686.0625 cm²

Attachments:
Similar questions