Math, asked by vigneshwarai10893, 7 months ago

A chord of circle of radius 10 cm subtends a right angle at the centre. Find the corresponding area of minor segment

Answers

Answered by Anonymous
123

\huge\bf\red{\underline{\underline{Given}}}\::

  • \sf\gray{\:OA\:=\:OB}
  • \sf\gray{\:Radius\:=\:10cm}
  • \sf\gray{\:\theta \:=\:90^{\circ}}

\huge\bf\red{\underline{\underline{To\:Find}}}\::

  • \sf\gray{Corresponding \:area \:of \:minor\: segment}

\huge\bf\red{\underline{\underline{Solution}}}\::

\clubsuit\:\:\underline{\boxed{\sf{\blue{\:Refer\:the\: attachment\:for\:diagram\:}}}}\:\:\clubsuit

\star\:\sf\underline\orange{Area\:of\: segment\:APB\:=\:Area \: of \ sector \ OAPB \ - \ Area \ of \ \triangle AOB}

\to\:\sf\purple{Area \: of \ sector \ OAPB \ = \ \dfrac{\theta}{360^{\circ}} \:\times\:\pi r^{2}}

\to\:\sf\green{Area \: of \ sector \ OAPB \ = \ \dfrac{90}{360} \:\times\:3.14\:\times\:(10)^{2}}

\to\:\sf\purple{Area \: of \ sector \ OAPB \ = \ \dfrac{1}{4}\:\times\:3.14\:\times\:100}

\to\:\sf\green{Area \: of \ sector \ OAPB \ = \ \dfrac{1}{4}\:\times\:314}

\to\:\sf\purple{Area \: of \ sector \ OAPB \ = \ 78.5cm^{2}}

\\

\sf\blue{In\:\triangle AOB}

  • \sf\gray{\angle O \:=\:90^{\circ}}

  • \sf\gray{Base\:=\:OA}

  • \sf\gray{Height\:=\:OB}

\\

\star\:\sf\underline\red{Now, \:Finding\:the\:area\:of\:\triangle AOB}

\mapsto\:\sf\orange{Area\:of\:\triangle AOB \:=\:\dfrac{1}{2}\:\times\:Base\:\times\: Height}

\mapsto\:\sf\pink{Area\:of\:\triangle AOB \:=\:\dfrac{1}{2}\:\times\:OA\:\times\: OB}

\mapsto\:\sf\orange{Area\:of\:\triangle AOB \:=\:\dfrac{1}{2}\:\times\:10\:\times\: 10}

\mapsto\:\sf\pink{Area\:of\:\triangle AOB \:=\:50cm^{2}}

\\

\star\:\sf\underline\red{Area\:of\: segment\:APB\:=\:Area\:of\: sector\:-\:</p><p>Area\:of\:\triangle AOB}

\hookrightarrow\:\sf\blue{Area\:of\: segment\:APB\:=\:78.5\:-\:50}

\hookrightarrow\:{\underline{\boxed{\tt{\purple{\:Area\:of\: segment\:APB\:=\:28.5cm^{2}\:}}}}}

Attachments:
Answered by Anonymous
55

 \pink{\large{\underline{\underline{ \rm{Given: }}}}}

◕ Radius of the circle = 10 cm

◕ Angle subtended by chord at center i.e., θ = 90°

 \pink{\large{\underline{\underline{ \rm{To \: Find: }}}}}

◉ Corresponding area of the minor segment.

 \pink{\large{\underline{\underline{ \rm{Solution: }}}}}

Area of the minor segment = Area of the sector OAB - Area of ABC formed with the radius and chord.

Area of the minor segment =

 \green{ \underline{ \boxed{ \tt{r</strong><strong>[</strong><strong>\</strong><strong>d</strong><strong>frac{\pi \theta}{360 \degree}  -  \</strong><strong>d</strong><strong>frac{1}{2}  \sin\theta</strong><strong>]</strong><strong>}}}}

 \tt = { \dfrac{\pi {r}^{2} \theta }{360 \degree}  -  \dfrac{1}{2}  {r}^{2}  \sin\theta}

Substitute the values in the formula, we have:

 \tt{ = 3.14 \times  \dfrac{10 \times 10 \times 90 \degree}{360 \degree}  -  \dfrac{1}{2}  \times 10 \times 10 \times  \sin90  \degree}

Sin 90° = 1;

 \tt{ = 3.14 \times  \dfrac{10 \times 10}{4}  -  \dfrac{1}{2}  \times 10 \times 10 \times 1}

 \tt{ = 3.14 \times  \dfrac{100}{4}  -  \dfrac{100}{2} }

Further solving it, we have:

 \tt{ = 3.14 \times 25  - 50}

 \tt{ = 78.5 - 50}

 \tt{ = 28.5 \:  {cm}^{2} }

Area of the minor segment =  \green{ \underline{ \boxed{ \tt{28.5 \:  {cm}^{2} }}}}

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

If we need to find Area of major segment.

Area of the major segment = Area of the circle - Area of the minor segment.

 \tt{ = \pi {r}^{2}  - 28.5}

On substituting the values of π and , we have

 \tt = 3.14 \times 10 \times 10 - 28.5

 \tt{ = 3.14  \times 100 - 28.5}

Removing Decimal:-

 \tt =  \dfrac{314}{100}  \times 100 - 28.5

 \tt{ = 314 - 28.5}

 \tt = 285.5  \: {cm}^{2}

Area of the major segment =  \green{ \underline{ \boxed{ \tt{285.5 \:  {cm}^{2} }}}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Attachments:
Similar questions