a chord pq of a circle with centre o and radius 15 cm is bisected at m by a diameter ab if om = 9 cm dind the lenght of pq ap bp
Answers
Answer:
AB bisects chord PQ at point C.
Therefore,
PR=QR=8cm
RB=4cm
Let, radius OA=OB=r
OB=OR+RB
=>r=OR+4
=>OR=r−4 (i)
Now,
OP
2
=OR
2
+PR
2
=>r
2
=(r−4)
2
+8
2
(using (i)
=>r
2
=r
2
−8r+16+64
=>8r=80
=>r=10cm
The radius of the circle is 10cm
Given, radius = 15 cm
OA = OB = OP = OQ = 15 cm
Also, OM = 9 cm
MB = OB – OM = 15 – 9 = 6 cm
AM = OA + OM =15 + 9 cm = 24 cm
In ∆OMP, By using Pythagoras Theorem,
OP2 = OM 2 + PM2
152 = 92 + PM2
PM2 = 255 – 81
PM = √144 = 12 cm
Also, In ∆OMQ
By using Pythagoras Theorem
OQ2 = OM2 + QM2
152 = OM2 + QM2
152 = 92 + QM2 (QM2 = 225 – 81)
QM = √144 = 12 cm
PQ = PM + QM
(As radius is bisected at M)
PQ = 12 + 12 cm = 24 cm
(ii) Now in ∆APM
AP2 = AM2 + OM2
AP2 =242 + 122
AP2 = 576 + 144
AP = √720 = 12 √5 cm
(iii) Now in ∆BMP
BP2 = BM2 + PM2
BP2 = 62 + 122
BP2 = 36 + 144
BP = √180 = 6 √5 cm