Math, asked by himu6601, 1 year ago

​​A chord PQ of the hyperbola xy = c2 is tangent to the hyperbola x2/a2 - y2/b2 = -1. Find the locus of the middle point of PQ.

Answers

Answered by ravi34287
1
xy=c2 is a transformed form of x2−y2=a2where c=a2√⇒a=c2‾√⇒a2=2c2Hence xy=c2 is written asx2−y2=2c2Let mid point be (h,k), hence equation of chord is T=S1xh−yk=h2−k2⇒yk=xh+(k2−h2)⇒y=xhk+(k2−h2)kCompare with y=mx+cm=hk and c=k2−h2kNow y=mx is tangent to x2a2−y2b2=−1 isc2=b2−a2m2Hence locus is(k2−h2k)2=b2−a2 h2k2⇒(k2−h2)2=k2b2−a2h2h→x and k→y⇒(y2−x2)2=y2b2−a2x2
Answered by amirgraveiens
2

The locus of the middle point of PQ is (y^2-x^2)^2=y^2b^2-a^2x^2

Step-by-step explanation:

Given:

Here it is given that a chord PQ of the hyperbola xy=c^2 is tangent to the hyperbola \frac{x^2}{a^2}- \frac{y^2}{b^2}=-1.

xy=c^2 is a transformed form of x^2-y^2=a^2

where c=\frac{a}{\sqrt{2} }

a=c\sqrt{2}

a^2=2c^2

Hence xy=c^2 is written as

x^2-y^2=2c^2

Let mid point be (h,k), hence equation of chord is,

T=S_1

xh-yk=h^2-k^2

xh-h^2+k^2=yk

yk=xh+(k^2-h^2)

y=\frac{xh}{k}+\frac{k^2-h^2}{k}

Compare with y=mx+c, we get

m=\frac{h}{k} and c=\frac{k^2-h^2}{k}

Now y=mx is tangent to \frac{x^2}{a^2}- \frac{y^2}{b^2}=-1 is,

c^2=b^2-a^2m^2

Hence locus is,

(\frac{k^2-h^2}{k})^2 =b^2-a^2\frac{h^2}{k^2}

(k^2-h^2)^2=k^2b^2-\frac{a^2h^2}{k^2}

(k^2-h^2)^2=k^2b^2-a^2h^2

h → x and k → y

(y^2-x^2)^2=y^2b^2-a^2x^2

Therefore, the locus of the middle point of PQ is (y^2-x^2)^2=y^2b^2-a^2x^2

Similar questions