Math, asked by mathursangeeta3529, 1 month ago

A circle has a radius of 7ft. Find the radian measure of the central angle θ that intercepts an arc of length 10ft.

Answers

Answered by SavageBlast
3

Given:-

  • A circle has a radius = 7ft.

  • Length of Arc = 10ft.

To Find:-

  • Measure of the central angle θ in radians.

Formula Used:-

  • {\boxed{\bf{Length\:of\:Arc=\dfrac{\theta}{360°}\times2\pi r}}}

Solution:-

Using,

\bf :\implies\:Length\:of\:Arc=\dfrac{\theta}{360°}\times2\pi r

\sf :\implies\:10=\dfrac{\theta}{360°}\times2\times \dfrac{22}{7}\times 7

\sf :\implies\:10=\dfrac{\theta}{360°}\times44

\sf :\implies\:\theta=\dfrac{10\times360}{44}

\sf :\implies\:\theta=\dfrac{10\times90}{11}

\sf :\implies\:\theta=\dfrac{900}{11}

\bf :\implies\:\theta=81.\overline{81}°

Now, 81.81° = 1.42 radians

Hence, Measure of the central angle θ in radians is 1.42.

━━━━━━━━━━━━━━━━━━

Similar questions