A circle has radius equal to 3 units and its centre lies on the line y = x – 1. Find the equation of the circle if it passes through (7, 3)
^-^
don't spam please
otherwise I will reported all answer and question
Answers
(x−h)
(x−h) 2
(x−h) 2 +(y−k)
(x−h) 2 +(y−k) 2
(x−h) 2 +(y−k) 2 =r
(x−h) 2 +(y−k) 2 =r 2
(x−h) 2 +(y−k) 2 =r 2
(x−h) 2 +(y−k) 2 =r 2 Here (h,k)→ centre
(x−h) 2 +(y−k) 2 =r 2 Here (h,k)→ centreEquation of line through centre
(x−h) 2 +(y−k) 2 =r 2 Here (h,k)→ centreEquation of line through centre k=h−1−−−−(1)w
& (x,y) point on circle
& (x,y) point on circleSo, given (x,y)=(7,3)
& (x,y) point on circleSo, given (x,y)=(7,3)So, (7−h)
& (x,y) point on circleSo, given (x,y)=(7,3)So, (7−h) 2
& (x,y) point on circleSo, given (x,y)=(7,3)So, (7−h) 2 +(3−h+1)
& (x,y) point on circleSo, given (x,y)=(7,3)So, (7−h) 2 +(3−h+1) 2
& (x,y) point on circleSo, given (x,y)=(7,3)So, (7−h) 2 +(3−h+1) 2 =3
& (x,y) point on circleSo, given (x,y)=(7,3)So, (7−h) 2 +(3−h+1) 2 =3 2
& (x,y) point on circleSo, given (x,y)=(7,3)So, (7−h) 2 +(3−h+1) 2 =3 2
& (x,y) point on circleSo, given (x,y)=(7,3)So, (7−h) 2 +(3−h+1) 2 =3 2 Using eqn (1)
& (x,y) point on circleSo, given (x,y)=(7,3)So, (7−h) 2 +(3−h+1) 2 =3 2 Using eqn (1)We get,
& (x,y) point on circleSo, given (x,y)=(7,3)So, (7−h) 2 +(3−h+1) 2 =3 2 Using eqn (1)We get,28+h
& (x,y) point on circleSo, given (x,y)=(7,3)So, (7−h) 2 +(3−h+1) 2 =3 2 Using eqn (1)We get,28+h 2
& (x,y) point on circleSo, given (x,y)=(7,3)So, (7−h) 2 +(3−h+1) 2 =3 2 Using eqn (1)We get,28+h 2 −11h=0
& (x,y) point on circleSo, given (x,y)=(7,3)So, (7−h) 2 +(3−h+1) 2 =3 2 Using eqn (1)We get,28+h 2 −11h=0h=7 oR 4
& (x,y) point on circleSo, given (x,y)=(7,3)So, (7−h) 2 +(3−h+1) 2 =3 2 Using eqn (1)We get,28+h 2 −11h=0h=7 oR 4k=6 oR 3
& (x,y) point on circleSo, given (x,y)=(7,3)So, (7−h) 2 +(3−h+1) 2 =3 2 Using eqn (1)We get,28+h 2 −11h=0h=7 oR 4k=6 oR 3Equation of circle corresponding (7,6)
& (x,y) point on circleSo, given (x,y)=(7,3)So, (7−h) 2 +(3−h+1) 2 =3 2 Using eqn (1)We get,28+h 2 −11h=0h=7 oR 4k=6 oR 3Equation of circle corresponding (7,6)x
& (x,y) point on circleSo, given (x,y)=(7,3)So, (7−h) 2 +(3−h+1) 2 =3 2 Using eqn (1)We get,28+h 2 −11h=0h=7 oR 4k=6 oR 3Equation of circle corresponding (7,6)x 2
& (x,y) point on circleSo, given (x,y)=(7,3)So, (7−h) 2 +(3−h+1) 2 =3 2 Using eqn (1)We get,28+h 2 −11h=0h=7 oR 4k=6 oR 3Equation of circle corresponding (7,6)x 2 +y
& (x,y) point on circleSo, given (x,y)=(7,3)So, (7−h) 2 +(3−h+1) 2 =3 2 Using eqn (1)We get,28+h 2 −11h=0h=7 oR 4k=6 oR 3Equation of circle corresponding (7,6)x 2 +y 2
& (x,y) point on circleSo, given (x,y)=(7,3)So, (7−h) 2 +(3−h+1) 2 =3 2 Using eqn (1)We get,28+h 2 −11h=0h=7 oR 4k=6 oR 3Equation of circle corresponding (7,6)x 2 +y 2 −14x−12y+76=0
& (x,y) point on circleSo, given (x,y)=(7,3)So, (7−h) 2 +(3−h+1) 2 =3 2 Using eqn (1)We get,28+h 2 −11h=0h=7 oR 4k=6 oR 3Equation of circle corresponding (7,6)x 2 +y 2 −14x−12y+76=0Equation of circle corresponding (4,3)
& (x,y) point on circleSo, given (x,y)=(7,3)So, (7−h) 2 +(3−h+1) 2 =3 2 Using eqn (1)We get,28+h 2 −11h=0h=7 oR 4k=6 oR 3Equation of circle corresponding (7,6)x 2 +y 2 −14x−12y+76=0Equation of circle corresponding (4,3)x
& (x,y) point on circleSo, given (x,y)=(7,3)So, (7−h) 2 +(3−h+1) 2 =3 2 Using eqn (1)We get,28+h 2 −11h=0h=7 oR 4k=6 oR 3Equation of circle corresponding (7,6)x 2 +y 2 −14x−12y+76=0Equation of circle corresponding (4,3)x 2
& (x,y) point on circleSo, given (x,y)=(7,3)So, (7−h) 2 +(3−h+1) 2 =3 2 Using eqn (1)We get,28+h 2 −11h=0h=7 oR 4k=6 oR 3Equation of circle corresponding (7,6)x 2 +y 2 −14x−12y+76=0Equation of circle corresponding (4,3)x 2 +y
& (x,y) point on circleSo, given (x,y)=(7,3)So, (7−h) 2 +(3−h+1) 2 =3 2 Using eqn (1)We get,28+h 2 −11h=0h=7 oR 4k=6 oR 3Equation of circle corresponding (7,6)x 2 +y 2 −14x−12y+76=0Equation of circle corresponding (4,3)x 2 +y 2
& (x,y) point on circleSo, given (x,y)=(7,3)So, (7−h) 2 +(3−h+1) 2 =3 2 Using eqn (1)We get,28+h 2 −11h=0h=7 oR 4k=6 oR 3Equation of circle corresponding (7,6)x 2 +y 2 −14x−12y+76=0Equation of circle corresponding (4,3)x 2 +y 2 −8x−6y+16=0
Answer:
FREE POINTS
Step-by-step explanation:
THANK YOU SO MUCH YAAR