A circle is inscribed in a triangle ABC having sides 8cm, 10cmand 12cn.find AD,BEand cf
Answers
Answered by
6
AD=AF=x,BD=BE=y, &CE=CF=z
form the equation of the three;AB=AD+DB=x+y=8...................(i)
BC=BE+EC=y+z=10..................(ii)
AC=AF+FC=x+y=12..................(iii)
Add the three equations;
AB=AD+DB=x+y=8)+BC=BE+EC=y+z=10)+AC=AF+FC=x+y=12)=2(x+y+z)=30
therefore;x+y+z=15..............(iv)
solve the three equations following the trend below;
(i)&(ii)=z=7
(ii)&(iv)=x=5
(iii)&(iv)=y=3
hence,AD=x=5cm
BE=y=3cm
CF=z=7cm
form the equation of the three;AB=AD+DB=x+y=8...................(i)
BC=BE+EC=y+z=10..................(ii)
AC=AF+FC=x+y=12..................(iii)
Add the three equations;
AB=AD+DB=x+y=8)+BC=BE+EC=y+z=10)+AC=AF+FC=x+y=12)=2(x+y+z)=30
therefore;x+y+z=15..............(iv)
solve the three equations following the trend below;
(i)&(ii)=z=7
(ii)&(iv)=x=5
(iii)&(iv)=y=3
hence,AD=x=5cm
BE=y=3cm
CF=z=7cm
Answered by
3
Step-by-step explanation:
Here given,
x+y = 8 cm ....(1)
y+z = 12 cm .....(2)
x+z = 10 cm .....(3)
Adding (1), (2) and (3), we get
2(x+y+z) = 30
x+y+z = 30/2
x+y+z = 15 .....(4)
(4) - (2), we get
x+12 = 15
x = 15 - 12
x =3
(4) - (3), we get
10+y = 15
y = 15 - 10
y = 5
(4) - (1), we get
8+z = 15
z = 15 - 8
z = 7
So,
AD = 3 cm
BE = 5 cm
CF = 7 cm Answer.
Similar questions