A circle is inscribed in an equilateral triangle ABC of side 12 cm. Find the radius of the inscribed circle and the area of the shaded region. [Use π = 3.14 and = 1.73]
Answers
Answered by
20
Hi there!
P, Q, R are the points on BC, CA and AB respectively then,
OP⊥BC
OQ⊥AC
OR⊥AB
Assume the radius of the circle as r cm.
Area of ∆AOB + Area of ∆BOC + Area of ∆AOC = Area of ∆ABC
⇒( 1/2× AB × OR) + (1/2× BC × OP) + (1/2× AC × OQ) = √3/4× (side)²
⇒ (1/2× 12 × r) + (1/2× 12 × r) + (1/2× 12 × r) = √3/4× (12)²
⇒ 3 × 1/2× 12 × r = √3/4× 12 × 12
⇒ r = 2√3 = 2 × 1.73 = 3.46
Hence, the radius of the inscribed circle is 3.46 cm.
Area of the shaded region = Area of ∆ABC − Area of the inscribed circle
= [√3/4×(12)² − π(2√3)²]
= [36√3 − 12π]
= [36 × 1.73 − 12 × 3.14]
= [62.28 − 37.68]
= 24.6 cm²
∴ The area of the shaded region is 24.6 cm²
Cheers!
P, Q, R are the points on BC, CA and AB respectively then,
OP⊥BC
OQ⊥AC
OR⊥AB
Assume the radius of the circle as r cm.
Area of ∆AOB + Area of ∆BOC + Area of ∆AOC = Area of ∆ABC
⇒( 1/2× AB × OR) + (1/2× BC × OP) + (1/2× AC × OQ) = √3/4× (side)²
⇒ (1/2× 12 × r) + (1/2× 12 × r) + (1/2× 12 × r) = √3/4× (12)²
⇒ 3 × 1/2× 12 × r = √3/4× 12 × 12
⇒ r = 2√3 = 2 × 1.73 = 3.46
Hence, the radius of the inscribed circle is 3.46 cm.
Area of the shaded region = Area of ∆ABC − Area of the inscribed circle
= [√3/4×(12)² − π(2√3)²]
= [36√3 − 12π]
= [36 × 1.73 − 12 × 3.14]
= [62.28 − 37.68]
= 24.6 cm²
∴ The area of the shaded region is 24.6 cm²
Cheers!
Attachments:
Similar questions
India Languages,
8 months ago
Math,
8 months ago
Science,
8 months ago
CBSE BOARD X,
1 year ago
Biology,
1 year ago
Chemistry,
1 year ago
Math,
1 year ago
Biology,
1 year ago