a circle is inscribed in an equilateral triangle ABC of side 12 cm. find the radius of inscribed circle and the area of shaded region
Answers
Given that ABC is an equilateral triangle of side 12 cm.
Construction:Join O and A, O and B, and O and C.
P, Q, R are the points on BC, CA and AB respectively then,
OP⊥BC
OQ⊥AC
OR⊥AB
Assume the radius of the circle as r cm.
Area of ∆AOB + Area of ∆BOC + Area of ∆AOC = Area of ∆ABC
⇒( 1/2× AB × OR) + (1/2× BC × OP) + (1/2× AC × OQ) = √3/4× (side) .
⇒ (1/2× 12 × r) + (1/2× 12 × r) + (1/2× 12 × r) = √3/4× (12)
⇒ 3 × 1/2× 12 × r = √3/4× 12 × 12
⇒ r = 2√3 = 2 × 1.73 = 3.46
Hence, the radius of the inscribed circle is 3.46 cm.
Area of the shaded region = Area of ∆ABC − Area of the inscribed circle
= [√3/4×(12) − π(2√3) ]
= [36√3 − 12π]
= [36 × 1.73 − 12 × 3.14]
= [62.28 − 37.68]
= 24.6 cm
∴ The area of the shaded region is 24.6 cm
Answer:
Given that ABC is an equilateral triangle of side 12 cm.
Construction:Join O and A, O and B, and O and C.
P, Q, R are the points on BC, CA and AB respectively then,
OP⊥BC
OQ⊥AC
OR⊥AB
Assume the radius of the circle as r cm.
Area of ∆AOB + Area of ∆BOC + Area of ∆AOC = Area of ∆ABC
⇒( 1/2× AB × OR) + (1/2× BC × OP) + (1/2× AC × OQ) = √3/4× (side)2.
⇒ (1/2× 12 × r) + (1/2× 12 × r) + (1/2× 12 × r) = √3/4× (12)2
⇒ 3 × 1/2× 12 × r = √3/4× 12 × 12
⇒ r = 2√3 = 2 × 1.73 = 3.46
Hence, the radius of the inscribed circle is 3.46 cm.
Area of the shaded region = Area of ∆ABC − Area of the inscribed circle
= [√3/4×(12)2 − π(2√3)2]
= [36√3 − 12π]
= [36 × 1.73 − 12 × 3.14]
= [62.28 − 37.68]
= 24.6 cm2
∴ The area of the shaded region is 24.6 cm2