a circle is inscribed in an equilateral triangle of 8 m.find the approx area of unoccupied space inside the triangle.
Answers
Answered by
1
In an equilateral triangle ABC the centroid G of the triangle is the center of the incircle (inscribed circle). Let the altitude be AGD, as it passes through G.
Let AB = BC = CA = a = 8 m.
Altitude AD = √3 a /2 = 4√3 m
Radius of Incircle = DG = AD / 3 = 4 / √3 m
Area of incircle = 16 π / 3 m²
Area of Equilateral triangle = 1/2 * AD * BC = √3/4 * 8² = 16√3 m²
Unoccupied space in ΔABC: 16√3 - 16 π /3 = 16/3 *(3√3 - π) m²
Let AB = BC = CA = a = 8 m.
Altitude AD = √3 a /2 = 4√3 m
Radius of Incircle = DG = AD / 3 = 4 / √3 m
Area of incircle = 16 π / 3 m²
Area of Equilateral triangle = 1/2 * AD * BC = √3/4 * 8² = 16√3 m²
Unoccupied space in ΔABC: 16√3 - 16 π /3 = 16/3 *(3√3 - π) m²
kvnmurty:
clik on thanks... select best ans.
Similar questions