Math, asked by Anonymous, 25 days ago

A circle is inscribed in an equilateral triangle whose side is 12 cm.Find the radius of the circle and the area of the shaded part

Attachments:

Answers

Answered by MysticSohamS
1

Answer:

hey here is your answer

pls mark it as brainliest

Step-by-step explanation:

to \: find =  \\ 1.radius \: (r) \: of \: incircle \:  \\ 2.area \: of \: shaded \: part \\  \\ so \: here \:  \\ △ABC \: is \: an \: equilateral \: triangle \\ and \: it \: circumscribes \: given \: circle \\ ie \:  \: given \: circle \: is \: inscribed \: in \: △ABC \\  \\ so \: as \: it \: is \: an \: inscribed \: circle \:  \\ it \: can \: be \: called \: as \: incircle \\ and \: its \: radius \: as \: inradius \:  \\  \\ so \: we \: know \: that \\ area \: o f\: equilateral \: triangle \:   =   \frac{ \sqrt{3} }{4}   \times side {}^{2} \\   \\A(△ABC) = \frac{ \sqrt{3} }{4}    \times (12) {}^{2} \\ \\  =  \frac{ \sqrt{3} }{4}  \times 144 \\  \\  = 36 \times  \sqrt{3}  \\    \\ A(△ABC) = 36 \sqrt{3}.cm {}^{2} \:  \:  \:  \:  \: \:  \:  \:  (1)  \\   \\ similarly \: then \\ perimeter \: of \: △ABC = 4 \times side \\ = 4 \times 12  \\  = 48.cm \\  \\  inradius \: of \:   \:  triangle =     \\  \frac{2 \times area \: of \: circumsribed \: triangle}{perimeter \:of \: that \: triangle \:  }  \\  \\  =  \frac{2  \times A(△ABC) }{perimeter \: of \: △ABC}  \\  \\  =  \frac{2 \times 36 \sqrt{3} }{48}  \\  \\  =  \frac{72 \sqrt{3} }{48}  \\  \\  r=  \frac{3 \sqrt{3} }{2} . \: cm

so \: hence \: then \\  \\ area \: of \: incircle = \pi.r {}^{2}  \\  \\  = \pi \times (  \: \frac{3 \sqrt{3} }{2}  \: ) {}^{2}  \\  \\  =  \frac{27\pi}{4}  \: .cm {}^{2}  \:  \:  \:  \:  \:  \:  \:  \:  \: (2)

thus \: then \\ area \: of \: shaded \: region =  \\ area \: of  \: A(△ABC) \:  - area \: of \: incircle \\  \\  =  36 \sqrt{3}  -  \frac{27\pi}{4}  \\  \\  =  \frac{(36 \sqrt{3} \times 4) - 27\pi }{4}  \\  \\  =  \frac{144  \sqrt{3}  - (27 \times 3.14)}{4}  \\  \\  =  \frac{(144 \times 1.73) - 84.78}{4}  \\  \\  =  \frac{249.12 - 84.78}{4}  \\  \\  =  \frac{164 .34}{4}  \\  \\  = 41.085 \: cm {}^{2}

Similar questions