Math, asked by Adityaanand20, 10 months ago

A circle is radius 5cm find the length of the chord of distance 3cm from its centre.​

Answers

Answered by itzshrutiBasrani
8

☆ Answer ☆

8cm .

☆ Explanation ☆

Step 1 : Frist we will write the Given radius of the Circle

AC = 5cm .

AO = 3cm .

Step 2 : Consider that AOC is the right angled triangle.

Step 3 : Apply Pythagoras Theorem

AO² + OC² = AC²

3² + OC² = 5²

9 + OC² = 25

OC² = 16

Step 4 : Take square root

O C = 4

Length of Chord = 4+4=8cm .

Answered by silentlover45
4

\underline\mathfrak{Given:-}

  • Radius of the chord of distance 3cm.
  • Distance of the chord from its chord = 3cm.

\underline\mathfrak{To \: \: Find:-}

  • Find the length of the chord ......?

\underline\mathfrak{Solutions:-}

  • Let AOB is a right angle triangle

(By using the Pythagoras Theorem)

\: \: \: \: \: \leadsto \: \: {AO}^{2} \: + \: {OB}^{2} \: \: = \: \:  {AB}^{2}

\: \: \: \: \: \leadsto \: \: {(3)}^{2} \: + \: {OB}^{2} \: \: = \: \: {(5)}^{2}

\: \: \: \: \: \leadsto \: \: {9} \: + \: {OB}^{2} \: \: = \: \: {25}

\: \: \: \: \: \leadsto \: \: {OC}^{2} \: \: = \: \: {25} \: - \: {9}

\: \: \: \: \: \leadsto \: \: {OC}^{2} \: \: = \: \: {16}

\: \: \: \: \: \leadsto \: \: {OC} \: \: = \: \: {\sqrt{16}}

\: \: \: \: \: \leadsto \: \: {OC} \: \: = \: \: {4}

Length of the chord = 4 + 4 = 8cm.

Hence, the length of the chord is 8 cm.

  1. Diameter of a circle = 2 × r
  2. Circumference of a circle = 2πr
  3. Area of a circle = πr²

where,

  • π = 22/7
  • r = radius
  • d = diameter
Similar questions