A circle is touching the side BC of triangle ABC at P and touching AB and AC produced Q and R respectively . Prove that AQ = 1/2[Perimeter of triangle ABC.
Answers
Answered by
54
Tangents drawn from an external point to the circle are equal.
BP = BQ ….(1)
CP = CR ….(2)
AQ = AR ….(3)
Now, AQ = AR
⇒ AB + BQ = AC + CR
⇒ AB + BP = AC + CP (Using (1) and (2)
Perimeter of ∆ABC = AB + BC + CA
= AB + (BP + PC) + AC
= (AB + BP) + (PC + AC)
= 2(AB + BP) ( AB + BP = AC + CP)
= 2(AB + BQ) (Using (1))
= 2AQ
hence, AQ = 1/2(perimeter of triangle ABC)
BP = BQ ….(1)
CP = CR ….(2)
AQ = AR ….(3)
Now, AQ = AR
⇒ AB + BQ = AC + CR
⇒ AB + BP = AC + CP (Using (1) and (2)
Perimeter of ∆ABC = AB + BC + CA
= AB + (BP + PC) + AC
= (AB + BP) + (PC + AC)
= 2(AB + BP) ( AB + BP = AC + CP)
= 2(AB + BQ) (Using (1))
= 2AQ
hence, AQ = 1/2(perimeter of triangle ABC)
Attachments:
Similar questions
Business Studies,
8 months ago
Hindi,
8 months ago