Math, asked by sonumona1980, 3 months ago

A circle of radius 2.1 cm is inscribed in a right-angled triangle
having sides 5 cm, 12 cm and 13 cm as shown in the figure. Find the
area of shaded region.​

Attachments:

Answers

Answered by Khushimohare62510
7

Answer:

Area of shaded region=16.14cm^2

Step-by-step explanation:

Base=12cm

Height=5cm

Area of triangle =1/2×b×h

=1/2×12×5

=30cm^2

Area of circle =πr^2

=22/7×(2.1)^2

=22/7×2.1×2.1

=22×0.3×2.1

=13.86 cm^2

Area of shaded region =Area of triangle-Area of circle

=30cm^2-13.86cm^2

=16.14cm^2

Hope it's help u!!

Answered by CɛƖɛxtríα
69

{\underline{\underline{\sf{Given:}}}}

  • A right-angled triangle whose measures are 13 cm, 5 cm and 12 cm.
  • A circle of radius 2.1 cm is inscribed inside the right-angled triangle.

{\underline{\underline{\sf{Need\:to\:find:}}}}

  • The area of shaded region (attachment).

{\underline{\underline{\sf{Formulae\:to\:be\:used:}}}}

\underline{\boxed{\sf{{Area}_{(Right-angled\: triangle)}=\frac{1}{2}\times (Base\times Leg)\:sq.units}}}

\underline{\boxed{\sf{{Area}_{(Circle)}=\pi {r}^{2}\:sq.units}}}

\underline{\boxed{\sf{{Area}_{(Shaded\:region)}={Area}_{(Right-angled\: triangle)}-{Area}_{(Circle)}\:sq.units}}}

{\underline{\underline{\sf{Solution:}}}}

First, let's find the area of right-angled triangle by substituting the given measures in the formula.

\:\:\:\:\:\implies{\sf{\frac{1}{2}\times (Base\times Leg)\:sq.units}}

\:\:\:\:\:\implies{\sf{\frac{1}{2}\times (12\times 5)\:{cm}^{2}}}

\:\:\:\:\:\implies{\sf{\frac{1}{\cancel{2}}\times \cancel{60}\:{cm^{2}}}}

\:\:\:\:\:\implies{\sf{\underline{30\:{cm}^{2}}}}

Next, let's find the area of circle by substituting the measures in the formula.

\:\:\:\:\:\implies{\sf{\pi{r}^{2}\:sq.units\:\:\:(\pi=\frac{22}{7})}}

\:\:\:\:\:\implies{\sf{\frac{22}{7}\times{(2.1)}^{2}\:{cm}^{2}}}

\:\:\:\:\:\implies{\sf{\frac{22}{7}\times4.41\:{cm}^{2}}}

\:\:\:\:\:\implies{\sf{\underline{13.86\:{cm}^{2}}}}

Finally, the area of shaded region:

\:\:\:\:\:\implies{\sf{Area\:of\: right\:angled\: triangle-Area\:of\:circle\:sq.units}}

\:\:\:\:\:\implies{\sf{30-13.86\:{cm}^{2}}}

\:\:\:\:\:\implies{\sf{\red{\underline{\underline{16.14\:{cm}^{2}}}}}}

{\underline{\underline{\sf{Final\:answer:}}}}

  • The area of the shaded region is \bf{16.14\:{cm}^{2}}.

_____________________________________

Attachments:

InstaPrince: Perfect Answer:)
CɛƖɛxtríα: Thanku..! ^▽^
InstaPrince: ^_^
Khushimohare62510: ☺,
Similar questions