Math, asked by sonalit197, 2 months ago

A Circle of radius 4 cm is cut from a
square sheet of side 8 cm. What is the
area of the remaining sheet?​

Answers

Answered by kailashmannem
58

 \huge{\bf{\green{\mathfrak{Question:-}}}}

  • A Circle of radius 4 cm is cut from a square sheet of side 8 cm. What is the area of the remaining sheet?

 \huge {\bf{\orange{\mathfrak{Answer:-}}}}

  •  \sf{Radius \: of \: the \: circle \: = \: 4 \: cm.}

  •  \sf{Length \: of \: side \: of \: a \: square \: = \: 8 \: cm.}

  •  \boxed{\sf{Area \: of \: a \: circle \: = \: \pi r^{2} \: units^{2}.}}

  •  \sf{\dfrac{22}{7} \: * \: r \: * \: r \: (r \: = \: 4 \: cm.)}

  •  \sf{3.14 \: * \: 4 \: * \: 4}

  •  \sf{50.24 \: cm^{2}}

  •  \boxed{\sf{Area \: of \: a \: square \: = \: s^{2} \: units^{2}.}}

  •  \sf{s^{2} \: (s \: = \: 8\: cm)}

  •  \sf{8 \: * \: 8}

  •  \sf{64 \: cm^{2}}

  •  \boxed{\sf{Area \: of \: remaining \: sheet \: = \: Area \: of \: Square \: - \: Area \: of \: Circle}}

  •  \sf{64 \: cm^{2} \: - \: 50.24 \: cm^{2}}

  •  \boxed{\sf{13.76 \: cm^{2}}}

 \huge{\bf{\red{\mathfrak{Conclusion:-}}}}

  •  \boxed{\therefore{\sf{Area \: of \: remaining \: sheet \: = \: 13.76 \: cm^{2}.}}}

 \huge{\bf{\purple{\mathfrak{Extra \: Information:-}}}}

  •  \sf{Area \: of \: circle \: = \: \pi r^{2} \: units^{2}.}

  •  \sf{Circumference \: of \: circle \: = \: 2 \pi r \: units.}

  •  \sf{\pi \: = \: \dfrac{Circumference}{Diameter}}

  •  \sf{Area \: of \: a \: square \: = \: s^{2} \: units^{2}.}

  •  \sf{Perimeter \: of \: square \: = \: 4s \: units.}

Answered by Anonymous
39

Answer:

Given :-

  • Radii of circle = 4 cm
  • Side of square = 8 cm

To Find :-

Area of remaining sheet

Solution :-

We know that

Area of circle = πr²

Area = 3.14 × 4²

Area = 3.14 × 16

Area = 50.24 cm²

Now,

Area of sheet = side²

Area = 8²

Area = 64 cm²

Now,

Remaining Area = 64 - 50.24 = 13.74 ≈ 13.75 cm

 \\  \\

Similar questions