Math, asked by shristi9448, 5 months ago

A circle of radius 4 cm is cut out from a square piece of an aluminium sheet of side 8
cm. What
is the area of the left over aluminium sheet?​

Answers

Answered by aaliarizwan
1

Answer:

Area of square sheet= s×s=8×8= 64cm²

Area of cut out circle = πr²=22/7×4²= 22/7×16 =3.14×16 =50.24 cm ²

Area of sheet left= Area of square- area of circle= 64-50.24 = 13.64 cm²

Answered by thebrainlykapil
58

Question:-

  • A circle of radius 4 cm is cut out from a square piece of an aluminium sheet of side 8cm. What is the area of the left over aluminium sheet?

Given:-

  • Radius of circle = 4cm
  • Side of square = 8cm

To Find:-

  • Area of the left over aluminium sheet

Remember:-

  • First find the area of square and Circle then minus them you will get the area of left over part .

Let's do it:-

⠀⠀⠀⠀⠀⠀⠀⠀⠀ \sf\green{ Area\: of \: Square \:}

\begin{gathered}\begin{gathered}: \implies \underline{ \boxed{\displaystyle \sf \bold{\:Area\: of \: Square \: = \: (\: Side\:)²  }} }\\ \\\end{gathered}\end{gathered}

\begin{gathered}\begin{gathered}: \implies \displaystyle \sf \: Area\: of \: Square \: = \: (\: 8\:)²  \\ \\ \\\end{gathered}\end{gathered}

\begin{gathered}\begin{gathered}: \implies \underline{ \boxed{\displaystyle \sf \bold{\:Area\: of \: Square \: = \: 64cm  }} }\\ \\\end{gathered}\end{gathered}

━━━━━━━━━━━━━━━━━━━━━━━━━

⠀⠀⠀⠀⠀⠀⠀⠀⠀ \sf\green{ Area\: of \: Circle \:}

\begin{gathered}\begin{gathered}: \implies \underline{ \boxed{\displaystyle \sf \bold{\:Area\: of \: Circle \: = \: \pi \:  {r}^{2}   }} }\\ \\\end{gathered}\end{gathered}

\begin{gathered}\begin{gathered}: \implies \displaystyle \sf \: Area\: of \: Circle \: = \:  \frac{22}{7}  \:  \times  \: 4 \:  \times  \: 4  \\ \\ \\\end{gathered}\end{gathered}

\begin{gathered}\begin{gathered}: \implies \displaystyle \sf \: Area\: of \: Circle \: = \:  \frac{22}{7}  \:  \times  \: 16  \\ \\ \\\end{gathered}\end{gathered}

\begin{gathered}\begin{gathered}: \implies \displaystyle \sf \: Area\: of \: Circle \: = \:  \frac{352}{7}  \:  \\ \\ \\\end{gathered}\end{gathered}

\begin{gathered}\begin{gathered}: \implies \underline{ \boxed{\displaystyle \sf \bold{\:Area\: of \: Circle \: = \: 50.28cm   }} }\\ \\\end{gathered}\end{gathered}

━━━━━━━━━━━━━━━━━━━━━━━━━

\sf\green{ Area\: of \: Left \: over \: part \:}

\boxed{ \sf \blue{Area\: of \: Square \: - \: Area\:  of \: Circle\: = \: Area \: of  \: Left \: over \:  part  }}

\begin{gathered}\begin{gathered}: \implies \displaystyle \sf \: 64cm \: -\: 50.28cm \:  \\ \\ \\\end{gathered}\end{gathered}

\begin{gathered}\begin{gathered}: \implies \underline{ \boxed{\displaystyle \sf \bold{\:Area\: of \: Left \: Over \: part  \: = \: 13.72cm   }} }\\ \\\end{gathered}\end{gathered}

So, the area of left over part = 13.72cm

━━━━━━━━━━━━━━━━━━━━━━━━━

Similar questions