a circle of radius 5 cm . in this circle the two chord AB and CD length same 6 cm . find length BC.
Answers
Answer:
Given that :-
- Circle of radius = 5cm.
- Two cords AB and CD length is 6 cm.
To find :-
- Length of BC
∴ P divides BC in the ratio = 6 : 6 = 1 : 1.
⇒ P is mid-point of BC.
⇒ OP ⊥ BC.
In ΔABP, by pythagoras theorem,
AB2 = AP2 + BP2
⇒ BP2 = 62 - AP2 ........(1)
In right triangle OBP, we have
OB2 = OP2 + BP2
⇒ 52 = (5 - AP)2 + BP2
⇒ BP2 = 25 - (5 - AP)2 .......(2)
Equating (1) and (2), we get
62 - AP2 = 25 - (5 - AP)2
⇒ 11 - AP2 = -25 - AP2 + 10AP
⇒ 36 = 10AP
⇒ AP = 3.6 cm
putting AP in (1), we get
BP2 = 62 - (3.6)2 = 23.04
⇒ BP = 4.8 cm
⇒ BC = 2BP = 2 × 4.8 = 9.6 cm
ANSWER:-
Given:
A circle of radius 5cm, in this circle the two chord AB & CD length same 6cm.
To find:
Find the length of BC.
Solution:
Attachment a figure;
Here,
⚫️AB= AC =6cm
⚫️radius,(DA) =5cm
⚫️OD= y
⚫️AD= (5-y)cm
BC = 2x
BD= DC= x cm
Now,
In ∆ABD & ∆ACD,
AB= AC
AD= AD 【common】
angle ADB = angle ADC= 90°
angle BAD = angle CAD
BD= DC = 1/2BC
Therefore,
In ∆BOD,
Using Pythagoras Theorem;
=) BD² + OD²= BO²
=) x² + y² = (5)²
=) x² + y² = 25.............(1)
In ∆ABD,
angleADB = 90°
=) AD² +BD² =AB²
=) (5-y)² + x² = (6)²
=) 25+ y² -10y +x² = 36
=) x² + y² -10y= 36 -25
=) x² +y² -10y =11
=) 25 - 10y = 11 [using eq.(1)]
=) -10y = 11 -25
=) -10y = -14
=) y = 14/10
=) y = 7/5cm
So,
Putting the value of y in equation(1), we get;
Thus,
The length of BC is 9.6cm.