Math, asked by srinivasreddy365, 9 months ago

A circle S=0 with radius √2 touches the line
x+y-2=0 at (1,1). Then the length of the tangent drawn
from the point (1, 2) to S=0=?​

Answers

Answered by amitnrw
2

Given :  A circle S=0 with radius √2 touches the line x+y-2=0 at (1,1).

To Find :  length of the tangent drawn from the point (1, 2) to S=0  

Solution:

x + y - 2 = 0

touches at point  ( 1 , 1)

Normal to x + y - 2 = 0 will have slope =  1

y - 1 = 1(x - 1)

=> y = x  is the normal to x + y - 2 = 0  ( tangent ) Hence passes through center

radius = √2

(x - 1)² + ( y - 1)²  =   ( √2)²

y = x

=> (x - 1)² + (x - 1)²  =   ( √2)²

=>  (x - 1)²  = 1

=> x = 0  ,  2

=> y = 0 , 2

Two possible circle

x² + y² = 2   or ( x - 2)² + ( y - 2)²  = 2

point ( 1 , 2)

=> 1² + 2² = 5 > 2 hence lies out side circle

( 1 - 2)²  + (2 - 2)²  = 1 < 2 hence lies inside the circle

so ( x - 2)² + ( y - 2)²  = 2 is eliminated

Hence x² + y² = 2 is the circle

point = (  1, 2)

x² + y² = 2

=> dy/dx  =  - x/y

Tangency  point ( h , k)   on circle

=>  ( k - 2)/ (h - 1)  =  - h/k    Equating slope

=> k² - 2k  = -h² + h

=> k²  + h² = 2k  + h

h² + k² = 2

=> 2k + h  = 2

=> h = 2 - 2k

(2  - 2k)² + k² = 2

=> 5k²  - 8k  + 2 = 0

=> k = (8 ± √64 - 40)/2(5)

=> k =( 4 ±  √6 )/5

k = (4 + √6)/5   ,  (4 - √6)/5

h = 2 - 2k    

h =  (2 - 2√6)/5  ,   2  +  2√6

points of tangency are :

(   (2 - 2√6)/5  , (4 + √6)/5)  and (   (2 + 2√6)/5 ,  (4 - √6)/5 )

Distance from  (  1, 2)

=  √ {(   (2 - 2√6)/5  -  1) ² + ((4 + √6)/5 - 2)² }

= √ {(   (-3 - 2√6)/5 ) ² + ((-6 + √6)/5)² }

= (1/5) √ {(  9 + 24  + 12√6 + 36 + 6 - 12√6 }

=  (1/5) √ {(75  }

= √3

the length of the tangent drawn from the point (1, 2) to S=0  is  √3

Learn More:

In the given fig AM,ANand BC fare tangents to the circle find the ...

brainly.in/question/9909143

In the figure o is the center of circle.radius of circle is 3.1cm and pa is ...

brainly.in/question/7157405

Attachments:
Answered by barani79530
0

Step-by-step explanation:

please mark as best answer and thank me

Attachments:
Similar questions