Math, asked by Itsking777, 1 month ago

A circle touches the side BC of a triangle ABC at P and the extended sides AB and AC at Q and R respectively. Prove that AQ is equal to half  the perimeter of △ABC​

Answers

Answered by subhansid7788
3

Step-by-step explanation:

Lengths of Δ drawn from an external pt to a circle are equal.

⇒ AQ=AR, BQ=BP, CP=CR$$

Perimeter of ΔABC=AB+BC+CA

=AB+(BP+PC)+(AR−CR)

=(AB+BQ)+PC+(AQ−PC)

=AQ+AQ=2AQ

AQ= 1/2(perimeter of ΔABC).

Similar questions
Science, 17 days ago