Math, asked by mohikgarg, 8 months ago

A circle with area A cm
is contained in the interior of a larger circle with area
(A-B)cm- and the radius of the larger circle is 4 cm If A, B. A+B are in AP
then the diameter in cm of the smaller circle is​

Answers

Answered by mishranishant289
1

Answer:

,Given :

Given :Area of smaller circle = A cm2

Given :Area of smaller circle = A cm2Area of larger circle = A+B cm2=πr2=16π

Given :Area of smaller circle = A cm2Area of larger circle = A+B cm2=πr2=16π∴ A =16π− B

Given :Area of smaller circle = A cm2Area of larger circle = A+B cm2=πr2=16π∴ A =16π− BA, B, A+B i.e 16π− B, B, 16π are in arithmetic progression

Given :Area of smaller circle = A cm2Area of larger circle = A+B cm2=πr2=16π∴ A =16π− BA, B, A+B i.e 16π− B, B, 16π are in arithmetic progression∴ (16π−B)−B=B−16π

Given :Area of smaller circle = A cm2Area of larger circle = A+B cm2=πr2=16π∴ A =16π− BA, B, A+B i.e 16π− B, B, 16π are in arithmetic progression∴ (16π−B)−B=B−16π⟹ 32π=3B

Given :Area of smaller circle = A cm2Area of larger circle = A+B cm2=πr2=16π∴ A =16π− BA, B, A+B i.e 16π− B, B, 16π are in arithmetic progression∴ (16π−B)−B=B−16π⟹ 32π=3B⟹ B=332π

Given :Area of smaller circle = A cm2Area of larger circle = A+B cm2=πr2=16π∴ A =16π− BA, B, A+B i.e 16π− B, B, 16π are in arithmetic progression∴ (16π−B)−B=B−16π⟹ 32π=3B⟹ B=332π∴ A=16π−332π

Given :Area of smaller circle = A cm2Area of larger circle = A+B cm2=πr2=16π∴ A =16π− BA, B, A+B i.e 16π− B, B, 16π are in arithmetic progression∴ (16π−B)−B=B−16π⟹ 32π=3B⟹ B=332π∴ A=16π−332π⟹ A=348π−32π

Given :Area of smaller circle = A cm2Area of larger circle = A+B cm2=πr2=16π∴ A =16π− BA, B, A+B i.e 16π− B, B, 16π are in arithmetic progression∴ (16π−B)−B=B−16π⟹ 32π=3B⟹ B=332π∴ A=16π−332π⟹ A=348π−32π                =316π

Given :Area of smaller circle = A cm2Area of larger circle = A+B cm2=πr2=16π∴ A =16π− BA, B, A+B i.e 16π− B, B, 16π are in arithmetic progression∴ (16π−B)−B=B−16π⟹ 32π=3B⟹ B=332π∴ A=16π−332π⟹ A=348π−32π                =316πBut A=Area of smaller circle =π×radius2=316π

Given :Area of smaller circle = A cm2Area of larger circle = A+B cm2=πr2=16π∴ A =16π− BA, B, A+B i.e 16π− B, B, 16π are in arithmetic progression∴ (16π−B)−B=B−16π⟹ 32π=3B⟹ B=332π∴ A=16π−332π⟹ A=348π−32π                =316πBut A=Area of smaller circle =π×radius2=316π⟹ radius=34

Given :Area of smaller circle = A cm2Area of larger circle = A+B cm2=πr2=16π∴ A =16π− BA, B, A+B i.e 16π− B, B, 16π are in arithmetic progression∴ (16π−B)−B=B−16π⟹ 32π=3B⟹ B=332π∴ A=16π−332π⟹ A=348π−32π                =316πBut A=Area of smaller circle =π×radius2=316π⟹ radius=34∴ Diameter =38=383.

Given :Area of smaller circle = A cm2Area of larger circle = A+B cm2=πr2=16π∴ A =16π− BA, B, A+B i.e 16π− B, B, 16π are in arithmetic progression∴ (16π−B)−B=B−16π⟹ 32π=3B⟹ B=332π∴ A=16π−332π⟹ A=348π−32π                =316πBut A=Area of smaller circle =π×radius2=316π⟹ radius=34∴ Diameter =38=383.Hence, option C is correct.

Step-by-step explanation:

plz mark it as brainliest

hope it helps you

thank you

Similar questions