Math, asked by antarabhattach65, 1 year ago

a circle with center o and angle AOB =90 degree . if the radius of the circle is 40 CM. calculate the area of the shaded region of the circle.

Attachments:

Answers

Answered by Ranveerjain
21
area of sector =1/4×22÷7×40×40=1257.1
area of triangle=1÷2×40×40=800
1257.1-8000
ans= 457.1
Answered by isyllus
16

Answer:

The area of shaded region is 456 cm²

Step-by-step explanation:

A circle with center O and ∠AOB =90°. If radius of the circle is 40 cm.

Area of triangle AOB,  A_T=\dfrac{1}{2}\times OA\times OB

                                    A_T=\dfrac{1}{2}\times 40\times 40

                                    A_T=800\text{ cm}^2

Area of sector AOB, A_S=\dfrac{\theta}{360^\circ}\times \pi r^2

                                  A_S=\dfrac{90}{360}\times \pi\times 40^2

                                  A_S=400\pi\text{ cm}^2

Area of shaded region = Area of sector - Area of triangle

                                   =A_S-A_T

                                   =400\pi-800

                                   =400(\pi-2)\text{ cm}^2\approx 456\ cm^2

Hence, The area of shaded region is 456 cm²

                               

Similar questions